
Architecture and operation of a Demand Side Management 

Evaluation Tool in the Residential Sector 

Tommaso Mura 

Thesis to obtain the Master of Science Degree in 

Energy Engineering and Management 

Supervisor: Prof. Luís António Fialho Marcelino Ferreira 

Examination Committee 

Chairperson: Prof. Duarte de Mesquita e Sousa 

Supervisor: Prof. Luís António Fialho Marcelino Ferreira 

Member of the Committee: Prof. João José Esteves Santana 

November 2018



 

 

  

i 
 

Abstract 

 

The electricity demand management of the residential sector proved to have a high potential for boosting the transition 

towards a cleaner and more decentralized energy sector. This practice is still underdeveloped in Europe, thus creating 

an obstacle to the penetration of renewable energy sources and a threat to a capital-intensive electric network upgrade. 

In this context, this thesis considers the combination of LV grid status assessment and Non-Intrusive Load Monitoring 

(NILM) techniques at the secondary substation level to overcome those limitations. 

The scope of this dissertation is the ideation of a commercial service that can combine LV grid assessment and NILM to 

facilitate the management of the LV network flexible loads for the DSOs. The techno-economic analysis of this service, 

the Demand Side Management Evaluation Tool, is performed to establish the accuracy of NILM when applied at the 

secondary substation and the economic viability of the service. 

The market feasibility study shows the regulatory maturity of the UK for the first application and the DSOs interest for 

this kind of service. The cost-benefit analysis proves that the generated benefits surpass the costs assessing with a good 

degree of certainty the financial viability of large-scale application. On the other hand, the outcomes of the testing 

phase reveal that the performance yielded by the reference algorithms when applied to multiple aggregated houses is 

not yet adapted for commercial application. The weak points are identified to adjust the most promising algorithms and 

untap the high environmental and economic benefits of the Demand Side Management Evaluation Tool 
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Operator 
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1. Introduction  
 

1.1. Context 
 

Global warming, energy security, and local pollution are just an example of the innumerous factors pushing towards a 

cleaner and more decentralized energy supply that presents itself as the antithesis of the current one. The necessary 

growing electricity consumption and the higher penetration of intermittent renewable power sources are generating a 

great challenge for the electricity grid and its operators. The aging power grid is approaching its capacity constraints 

and the fluctuating energy supply is increasing significantly the difficulty of balancing the demand. The possibility of a 

blind increase in capacity and storage of the power system is not an option because of the incredibly high investment 

that would be needed.  

The energy sector is experiencing a radical transformation based on three major trends; Electrification, decentralization, 

and digitalization. The industry is expected to change at a pace that can be compared to the telecommunication one, 

wherein a few years an extremely costly and inefficient sector increased exponentially the quality of its service cutting 

its costs. Electrification is proceeding fast in sectors that traditionally have been based on fossil fuels like transportation 

and heating. This change is necessary to reach the long-term carbon reduction goals set by the European Union and 

maintain the atmospheric temperature increase below 2 °C in 2100 as stated by COP 21 in Paris. For instance, an 

exponential growth is expected in EV industry with Bloomberg New Energy Finance predicting the price parity with 

gasoline counterpart in 2022. In 2017, the electric vehicle market in the US grew by 26%, giving less than 5 years to the 

system operators to update the electrical grid [1]. The rapid decrease in cost of distributed energy resources, with the 

leadership of solar PV and storage, is stimulating the decentralization of energy production in the electricity grid that 

was originally built considering just one direction power flow from big centralized power plants to the loads. From 2008 

to 2013, under incentives regime, distributed PV in Italy scaled up from 0.1% to 8.7% of total national electricity 

generation. The incentives needed to be suppressed in 2013 because the grid infrastructure could not tolerate that 

production increase [2]. Digitalization is another leading trend in the energy industry pushing the two others mentioned 

before through intelligent control and automation.  

The traditional electricity network is evolving beyond delivering electricity to consumers and becoming a digital platform 

where they can actively engage and participate giving their own contribution, ultimately getting several benefits 

including economic ones [3]. The Internet of Things (IoT) technologies, including smart meters, controllable switches, 

and communication infrastructure together with Big Data management and analysis are making this transformation 

possible and the consumers more aware of their electricity consumption and possible benefits in this process. 

1.1.1. Overview on Demand Response (DR) 
 

Demand-Response (DR) appears in this transition environment as a possibility to match the electricity consumption with 

the supply with an upside-down approach, where the end users participate actively consuming electricity when it is 

abundant and receiving an incentive to do so. In a growing number of countries, the share of intermittent renewable 
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energy sources is reaching a level where a larger degree of flexibility becomes necessary compared to the conventional 

grid, DR can play a key role in this phase as a relatively cheap source of additional flexibility  [4]. The residential sector 

represents the 20% [5] of the total energy consumption worldwide and its potential as a DR energy source is largely 

undeveloped in Europe. Nonetheless, the digitalization of the energy system, the penetration of IoT devices in the 

quotidian and the positive push from European regulation framework are creating the perfect environment for its 

disruption and for business creation. Many programmes have targeted industrial and commercial customers so far since 

the residential sector can be more difficult to involve due to customer engagement issues, and the limited range of 

flexibility available per consumer. However, smart devices and the IoT make residential users capable of responding to 

automated price signals together with the potentiality of aggregation of consumers, are helping make DR programmes 

more available even for residential customers [6]. Demand-Response represents a clean, low cost and fast dispatch 

energy source that would boost renewable energy penetration and smart electricity consumption in our future society.  

1.1.2. Useful definitions 
 

Some definitions necessary for the comprehension of the work are listed in this paragraph. 

Demand Response (DR) 

The Department of Energy of the United States defines the term like this “Demand response provides an opportunity 

for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage 

during peak periods in response to time-based rates or other forms of financial incentives”. The word can also have a 

broader meaning including every asset in the distribution network able to provide or consume energy reacting to a 

certain control signal. With the latter definition, any distributed energy resource (DER) can be considered as DR resource 

if able to vary its energy output from its static generation or demand pattern in response to a control signal. 

Demand Side Management (DSM) 

Demand Side Management represents a broader sense of Demand Response including also the reduction of end-user 

consumption and behavioral changes. It can be formally formulated as “The planning, implementation, and monitoring 

of activities designed to encourage consumers to modify patterns of energy usage, including the timing and level of 

electricity demand. Demand side management includes demand response and demand reduction.” [4] 

Aggregator 

Smart Grids Task Force – Expert Group 3 defines the aggregator as: “A legal entity that aggregates the load or generation 

of various demand and/or generation/production units. Aggregation can be a function that can be met by existing 

market actors or can be carried out by a separate actor. EED: aggregator means a demand service provider that 

combines multiple short-duration consumer loads for sale or auction in organized energy markets.” [4] 

Balance Responsible Party (BRP) 

The Balance Responsible Party is a legal entity that manages a portfolio of demand and supply of electricity and has a 

commitment to the system operator in an ENTSO-E control zone to balance supply and demand in the managed portfolio 
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on a Program Time Unit (PTU) basis according to energy programs. Legally, all metered nodes in the power system have 

program responsibility; this responsibility currently ultimately is delegated to the BRP. [4] 

Distribution System Operator (DSO) 

The distribution System Operator (DSO) is the entity in charge of securely operating and developing an active 

distribution system comprising networks, demand, generation and other flexible distributed energy resources (DER). It 

must cover the position of a neutral facilitator of an open and accessible market and enable the competitive access to 

the electricity markets and the optimal use of DER in the distribution network to deliver security, sustainability, and 

affordability in the support of whole system optimization. A DSO promotes customers to be both energy consumers and 

producers, facilitating customer access to networks and markets [7]. 

Figure 1 explains how the different actors of the demand side management environment are connected to each other. 

For the scope of this thesis, the aggregator needs to deal with the DSO only, framed in red, even if it can create 

relationships with all the entities in the image. 

 

Figure 1. Demand side management value chain 

1.1.3. Institutional context – Policies and Regulation 
 

European Union directives regarding energy policies do not establish a detailed legislation that can differ for every single 

state, but a series of requirements and guidelines that the member states should follow to achieve the European goals. 

The current EU directives regarding the electricity sector and the demand side management concern the internal 

electricity market (Directive 2009/72/EC [8], part of so-called 3rd energy package) and energy efficiency (Directive 

2012/27/EU [9]). Grid codes of the European Network of Transmission System Operators for Electricity [10] states a 

series of rules that the member states have to follow regarding the transmission of electricity at high voltage. Directive 

2009/72/EC supports the empowerment of final customers and gives suggestions about how data should be used, 
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nonetheless, DSM or DR are not mentioned. Directive 2012/27/EU and grid codes recognize the importance of DR and 

set some guidelines for reducing the barriers of the regulatory framework. 

The recent package of directives “Clean Energy for All Europeans” (known as “Winter Package”) stresses on the need of 

integration of renewable sources and empowerment of end users by rewarding flexibility sources like generation, 

demand, and storage on the market. The European directive represents a milestone for DSM and specifically expresses 

“Every consumer will also be entitled to a smart meter equipped with common minimum functionalities. The Member 

States not planning to roll-out smart meters are required to assess the cost-effectiveness of a large-scale smart metering 

deployment on a regular basis” and ”Every consumer will be able to offer demand response and to receive remuneration, 

directly or through aggregators” [11]. Despite the importance of this document for the acknowledgment of DR as a 

resource for the electrical system and for the acceptance of the role of the aggregator, the member states resulted to 

have a different vision about its actual adoption. The situation at European level appears indeed extremely scattered 

with states like France and the UK where a mature regulation framework is in place about demand-side energy resource 

and aggregation [12]. On the other hand, countries like Portugal and Italy are laying far behind with neither DR or load 

aggregation allowed. However, the DSM market is moving fast, and the regulatory barriers are expected to fall in a 

relatively short time. 

Figure 1 shows the status of the European regulatory framework in a matter of DR and aggregation in the year 2017 

[12]. 

 

Figure 2. Map of explicit demand response development in Europe today [12]. 

1.1.4. Load disaggregation techniques 
 

The changing energy system presents several challenges that are nowadays offering a unique opportunity for resolution 

or at least significant improvement. First, the residential sector roughly contributes to 20% of global energy demand 

and an enormous potential for low-cost energy reduction is estimated, yet not achieved. 8% of total energy use and 
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emissions can be abated with efficiency improvements in these buildings [13]. In addition, experts believe that a major 

barrier for this missed achievement is represented by behavioral resistance. Second, the multi-billionaire smart meter 

infrastructure is far behind from reaching its full potential of financial benefits that are estimated to be up to 8% from 

energy shifting and conserving benefits [14]. 

An opportunity to leverage smart meter infrastructure and untap the energy savings and peak shifting potential of the 

residential and commercial sector is represented by load disaggregation techniques. It refers to a series of methods to 

extract single load features from an aggregated energy signal [15]. 

Load disaggregation, also known as nonintrusive load monitoring (NILM) or energy disaggregation, is a technique to 

deduce what appliances are used in a household and their individual electricity consumption analyzing changes in 

current and voltage at smart meter level. The name NILM is since this method present itself as an antithesis to the 

intrusive load monitoring techniques that require a measurement at a single appliance level. The measurement at the 

single point of the house allows indeed to reduce significantly the intrusiveness of the hardware for the householders 

and cut the installation and operation costs. Figure 3 illustrates the concept of Load Disaggregation that was previously 

explained. 

 

Figure 3. Load Disaggregation concept illustration [16] 

Energy disaggregation has a wide range of applications that go far beyond the simple household appliance detection 

and represents a fast-growing industry in the last years. The most interesting applications of NILM are explained below 

[17]. 

- Detailed bill information: this is the most widespread application and tries to provide detailed information 

about the single appliance use to improve end users’ awareness about their electricity consumption and 

achieve reductions in their bills. 

- Industrial monitoring: it represents a highly promising, yet a less explored application that allows monitoring 

of the key industrial assets from a single point reading to prevent failures and reduce maintenance costs. 

- Utility and Policy applications: Load disaggregation presents multiple applications for utilities such as improved 

load forecasting, theft detection, energy efficiency targets evaluation, grid planning, and demand response. 

The last two applications will represent the focus of this thesis. 
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Load disaggregation techniques for demand-response applications 

The contribution of load disaggregation techniques in demand response consists of the identification of flexible loads 

or inactivity periods in the end users’ electricity consumption pattern. This makes possible to target specific customer 

segments for demand response programs. In addition, utilities would be able to increase the accuracy of demand 

forecasting using improved models of usage at appliance level to better identify the peaks of energy consumption. 

Moreover, utilities could know at any time the amount of flexible or deferrable loads in the electricity grid and, if a 

direct control infrastructure is in place, could suggest or activate load sheds to conserve energy during peak load times 

or perform other grid services. Finally, a possible scenario for utilities is to differentiate their electricity provision offer 

with type of usage pricing models that would flank the already existing time of usage ones [18].  

The demand response application to ease the balancing of the electricity grid, reduce energy consumption and postpone 

or avoid investments in grid infrastructure is part of a bigger picture of Utility and Policy benefits that space out from 

this type of use. Indeed, the disaggregation of electric loads creates a series of strategic advantages that involve the 

whole energy system. The main benefits can be grouped as follow [15]. 

- Offer evaluation: the improved quantification of savings and customers behavior knowledge results in the 

increased objectivity of program evaluation allowing a better program design and diversification of offer for 

customer retention and new sales. 

- Segmentation of energy efficiency marketing: it allows a specific and strategic energy efficiency marketing with 

the aim to have tailored offers and incentives. 

- Building contractor ratings and incentives: the disaggregation of loads leads to more accurate performance-

based metrics which could impact real estate value and the evaluation of contractor performance. 

- Economic modeling and policy recommendations: it permits to better identify the targets for funding 

allocations in energy efficiency and grid planning policies thanks to assets recognition and enhanced load 

forecasting. 

1.2. Distribution network demand response services 
 

In the past chapter, an overview of what is demand response and on the potential of non-intrusive load monitoring for 

grid management was completed. This part will deepen the topic and explain why the DSO can use DR and NILM as 

resources and which are the barriers slowing down this process. 

The electricity distribution grid is planned to reliably and safely manage the power flows up to its rated capacity. The 

maximum electricity demand is forecasted at different parts of the distribution network one or more years in advance 

to plan system improvements and maintain a reliable supply. The system operators may also activate specific 

mechanisms to reduce loading on part of the distribution system due to forecasted or unexpected peak conditions 

during the operation. These activities traditionally consist in either a manually operated load transfer from one feeder 

to one other or in advanced systems that perform the same action automatically. An additional advantage of these 

procedures is to defer the investments on the distribution grid and increase assets lifetime [19]. 
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As previously mentioned, the variability of DER is also creating new load patterns that may result in working conditions 

for which the distribution assets were not designed for. For instance, transformers that are currently taking advantage 

of the lower demand and ambient temperature to cool down overnight may not be able to do so if a large fleet of 

electric vehicles is connected after dark [20]. Indeed, the penetration of DER decoupled from grid planning is creating 

challenges to maintain the reliability and stability of the local distribution systems. To better understand the nature of 

these challenges, the most usual problems in the low voltage network are described in the following paragraph. 

Figure 4 illustrates the physiognomy of the distribution network, the area of the distribution network that needs to be 

designed and operated by the DSO. 

 

Figure 4. Distribution network schematics of the Ancillary services for the DSO [21] 

Ancillary services are defined by EURELECTRIC as all the necessary activities performed by the transmission and 

distribution system operator to maintain the integrity and stability of the transmission or distribution systems as well 

as the power quality [22]. As previously stated, this thesis will keep the focus on the distribution system only and the 

most typical issues affecting the LV network are voltage unbalance, overvoltages, line congestion, and transformer 

overheating. To tackle these problems the DSOs can upgrade the grid infrastructure, limit the penetration of DER or 

purchase ancillary services from generators or demand-side resources. The two main ancillary services for the DSOs are 

[23]: 

- Voltage control: reactive power can be used to compensate for voltage drops, but this is generally provided 

from or to the transmission network because of the lack of resources in the distribution one. Voltage control 
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can also be operated with tap chargers at HV/MV substation level. Nonetheless, reactive power generated by 

DER connected at MV or LV nodes can be used for reactive power support of local voltage control. 

- Line congestion: current congestion of the distribution feeders is mainly related to the electrification of the 

heating and transportation sectors that is adding a vast number of loads to the aging LV network. Hierarchical 

control applied to the DER in the distribution network could significantly extend the transport capacities of the 

existing distribution lines. The value of this service can be evaluated through the avoided or postponed 

investment in the grid infrastructure. 

1.2.1. Problem identification 
 

Despite the potential of flexible loads and DER to deliver low cost ancillary services for the DSO and the opportunity to 

identify these resources in the grid with NILM techniques, this does not represent the real-world scenario and two main 

technical barriers are identified and analyzed. The first is the lack of a geographical information in the demand response 

environment and the second is the violation of customer privacy when NILM techniques are applied at a single house 

level. These limitations are explained in the following paragraphs and later in the thesis, a solution will be studied. 

1.2.1.1.  Lack of a geographical information in the demand response environment 

 

Although DR represents an opportunity to facilitate grid balancing and boost the penetration of renewable sources, the 

many incentive-based programs in the market are designed with little or no regard to more specific and localized 

geographic necessities of the distribution network. For example, load relief may be necessary for a specific part of 

utility’s service territory to achieve system reliability, but program rules are often not conceived to target the end users 

of a specific geographical region. Other distribution system problematics such as power quality of phase balancing have 

a highly localized nature and suffer from the same regulations. Hence, because of the inability to set event dispatch at 

a granular geographical level, the incentive-based or time-based programs have little or no potential to address the 

distribution network problems [20]. This problem is strictly related to the regulatory framework that does not allow 

either to target only the end user from a specific region or to ask for a differentiated performance in case of events 

because of discriminatory reasons.  

A program design change towards a more geographical specificity could instead generate value for the distributed 

system operator with a decisively positive impact on maximum capacity relief, emergency load transfer, voltage 

management, and outage recovery. Faster response and direct control from the utility side could also improve power 

quality and phase balancing [20]. Figure 5 gives an overview of what is a localized problem. If a line congestion event 

happens it will influence the area fed by that specific line only (area in red) and if some demand response resources 

want to be unleashed to solve it, this must be done within the red area. Nowadays, the DSO, that is in charge for solving 

the LV network problems, has nearly zero visibility on the flexible loads in the red area and the regulatory framework 

does not allow to involve the customers in the red area only in the delivery of a load relief. This results in an almost 

complete inefficiency of DR programs to solve the DSO grid management problems. 
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Figure 5. LV Line congestion event 

The geographic approach for more efficient DR resources dispatches also pulls other opportunities to face the 

distribution system needs like advanced metering infrastructure (AMI) deployment and improved DER installation 

planning. The visibility of the operating state at certain parts of the distribution system is very limited for several utilities. 

The lack of advanced metering infrastructure makes the identification of some grid challenges extremely difficult and 

then the assessment of what resources would be needed to tackle them inefficient and expensive. A renovated interest 

towards local solutions would attract investments to position AMI in the territory and perform complex operational 

analytics in the field of advanced distribution management for efficient utilization of DR resources and grid planning. In 

addition, a higher resolution visibility on the territory would incentivize the location of DER in the right place of the 

distribution grid avoiding reaching the location maximum capacity and with the possibility to defer or replace 

conventional infrastructure build-out. Moreover, microgrid with controllable DER may ensure the electricity supply in 

some specific locations even if there is an outage elsewhere.  

On the other hand, an increased geography-based DR design may complicate the work of aggregators that would need 

to look for flexibility sources only in specific areas. Furthermore, if the concentration of these resources is not high 

enough it may be difficult to develop a business model that could collect enough value to justify the investment in 

infrastructure and make the business viable. The modeling and evaluation of the DR resource at such a local level would 

make the aggregators’ duties even more challenging. 

1.2.1.2. Violation of customer privacy of NILM techniques  

 

The monitoring of end users’ consumption gives information about their Typical Load. The analysis of these data can 

yield to the disclosure of sensitive information about user behavior such as house occupancy and occupant activities 

causing severe privacy issues. The data to discern consumers’ actions through electrical consumption disaggregation 

algorithms come from smart meters installed at single house level, hence the analyzed data can be easily connected to 
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a specific person or family. A smart meter (SM) is an internet-capable device that measures the electricity consumption 

of a household. Whereas traditional meters are only able to evaluate the total consumption, smart meters record the 

electricity usage on a live basis and allow bi-directional communication with the electric utility. SM represents a €45 

billion market only in the European Union, its installation is strongly recommended by the European directive (Clean 

Energy for All Europeans, 2016) and the forecasted penetration rate per country in 2020 is shown in Figure 6 [24]. 

 

Figure 6. Regulation for the roll-out of SM by 2020, in green wide-scale deployment (>80%), in light green NO wide-scale 
deployment (<80%), in red Selective roll-out, in orange no data and blue no clear regulation (European Commission, 2014). 

The large availability of granular data is generating information-rich societies and users can benefit out of it to increase 

the awareness over their electricity consumption and reduce their bills and impact on the Planet. Nonetheless, this 

process is paving the way for inappropriate use and it becomes crucial to address the end users’ privacy concern of 

sensitive data while providing a service. Consumers’ data are protected by EU directive on the processing of personal 

data that sets who can access personal data and under which circumstances. The European Commission also elaborated 

a guidance on data protection and privacy for data controllers and investors in the smart grids. However, the European 

Directives do not have direct validity in each country where the management of personal electricity consumption data 

requires national regulations and often the electricity utilities are the only owner of the data.  

The energy ecosystem is populated by a wide range of active participants such as appliance manufacturers, retail 

industry, healthcare and many more. The availability of house consumption data is making possible a set of derivative 

application offered by third parties like theft detection, elderly monitoring and dynamic pricing [25]. Once smart meter 

data are shared with third parties intended or unintended leakage of private information is inevitable, creating primary 

privacy concerns. NILM can derive with high precision every single appliance usage, then the user activity profile can be 

easily identified [26]. For instance, health insurance providers could record user’s sleeping, eating, exercise, even late 

partying activities to elaborate ad hoc risk premiums [27]. The high granularity of users’ electricity consumption gives 

also information about the type and conditions of house appliances that could be used by home retail manufacturers 
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to push more efficient products at house level. Indeed, the access to such granular data can make every information 

about users from gender to financial condition easily derivable [26]. 

1.3. Solution overview: DSM Evaluation Tool 
 

In the previous chapters, the potentiality of non-intrusive load monitoring for demand response applications was 

presented highlighting the opportunity to decrease the cost of transition towards a renewable energy system together 

with the obstacles to its implementation. The main technical barriers for untapping the potential of demand-side 

management to provide the distribution system flexibility services can be sum up as: 

- The inability to dispatch flexibility at a precise geographical location reducing significantly its efficacy to solve 

DSOs’ issues in the LV grid 

- The violation of people privacy when NILM techniques are implemented at a single house level 

To overcome these barriers a new service is needed in the energy sector and this could be provided through the 

application of NILM techniques at the distribution substation level. Indeed, load disaggregation algorithms could 

extrapolate from the power readings the characteristic signatures of the flexible assets such as electric vehicles, heat 

pumps, and distributed energy resources and identify where and when they are consuming or producing electricity in 

the low voltage network. When the data from the MV/LV transformer derivation are used to perform energy 

disaggregation multiple value propositions can be generated: 

1. Deliver real-time notification and recommendations on the state of the LV network such as feeders’ capacity, 

transformer thermal rate, and grid voltage 

2. Identify the demand response potential of the LV network due to flexible controllable loads in the area 

preserving the privacy of the end users 

3. Boost the installation and limit the curtailment of the local distributed energy resources cross-checking the grid 

capacity and available flexibility 

The described service, that will be called DSM Evaluation Tool, would benefit both DSOs and energy aggregators. The 

former with a platform for the dispatch of localized distribution system services and the latter with a market to deploy 

its demand response solutions as explained in Figure 7. 
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Figure 7. The value proposition of NILM for demand response at the secondary substation level 

The detailed description of the service comprehensive of software and hardware requirements expected impact and 

preliminary operation will be presented in the next chapters of the work. 

NILM at the secondary substation level 

The evaluation of the flexibility potential of the LV grid requires the application of NILM-based signal processing 

techniques at the power measurements on the LV derivation of the MV/LV transformer. The characterization of data 

and the modality of the acquisition will be explained in the chapter relative to the hardware and software requirements. 

Nowadays NILM is mainly applied at a single house level where the analysis of the aggregated power consumption at 

smart meter level allows the recognition of the single appliances. It is possible to disaggregate the individual loads from 

the total power consumption thanks to the load signature which is the peculiar current pattern observed during the 

operation of an electric equipment. 

For the purpose of this thesis, it is necessary to extend the application of these techniques at a higher level in the 

distribution network. Energy disaggregation at substation level allows the breakdown of the transformer load among 

each type of end user making possible to identify daily, seasonal and yearly electricity consumption trends. The 

qualitative and quantitative data about end users’ consumption allows the evaluation of the substation expectancy to 

meet the demand and the eventual planning of corrective actions such as asset upgrade or replacement and smart grid 

solutions. The focus of this thesis is indeed the possibility to highlight the amount of flexible and manageable loads in 

the LV grid to evaluate the demand side management potential of a specific area. The disaggregation at substation level 

makes also possible to correlate load patterns with environmental variables such as temperature to forecast with higher 

accuracy the variation of the transformer load when the external conditions are changing. 

The electrical loads served by one MV/LV transformer are a mix of industrial, commercial and residential consumers, 

but for sake of simplicity, this thesis with deal with a substation that is supplying electricity to residential customers 

only.  
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The problem of disaggregating individual electrical loads acquires additional difficulty when applied at the secondary 

substation level for two basic reasons [28]: 

1. The number of involved loads increases significantly 

2. Current harmonics, that are often used for signature recognition, are more difficult to reconduct to a specific 

appliance when a lot of non-linear loads are operating at the same time 

However, for the scope of identifying the flexibility potential of an area served by a specific MV/LV transformer, is not 

necessary to identify every single load as the research and industry are doing at single house level, but only the most 

energy-hungry and flexible assets. This equipment is generally the easiest to recognize among the house loads for their 

magnitude of energy use and type of electrical consumption pattern. The considered flexible assets will be discussed in 

the chapter relative to the critical assets to disaggregate. 

Figure 7 illustrates how NILM techniques applied at the secondary substation level would work to identify demand 

response resources and enable the delivery of flexibility services for the DSO. In Figure 8 it is shown that the detected 

flexibility resources could be used for relieving the congestion of an LV feeder. 

 

Figure 8. Example of NILM for demand response applied at the secondary substation 

Some relevant works are available about the topic of energy disaggregation at a secondary substation or even higher 

aggregation. In the H2020 project FLEXMETER, partners from research and industry treat different topics relative to 

smart grid applications and among them NILM at the single house and substation level. Nonetheless, the details and 

results of the applications of NILM techniques at the MV/LV transformer derivations are not divulgated [29]. Gregory S. 

Ledva et Al. in [30] and Diptargha Chakravorty et Al. in [31] also investigated the NILM problem at distribution feeder 

level but using load models to perform the disaggregation at higher level than the conventional smart meter one. 
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On the other hand, among the objectives of this thesis, there is the verification of the state of the art of NILM algorithms 

built for conventional disaggregation problems when applied with little or no modifications at secondary substation 

level. 

1.4. Methodology 
 

The electrification of the transportation and heating sectors together with the growing decentralized electricity 

production is creating new issues for the Distribution System Operator such as frequent line congestions and voltage 

drops. The management of the flexible loads of the residential sector is a great opportunity for reducing the impact of 

these issues through DSM schemes, however, this is hardly ever done. In addition, NILM techniques are a useful tool to 

improve the identification of flexibility resources and manage their operation within the context of a demand response 

program. Two important technical barriers are considered to slow down the deployment of DR schemes in the LV grid 

and these are the lack of geographical information in the demand response environment and the violation of customer 

privacy when NILM techniques are applied at single house level. The DSM Evaluation Tool is presented as a possible 

solution to these problems as the application of NILM techniques at secondary substation level combined to the 

conventional LV monitoring would allow to identify and manage the flexibility resources at local level preserving the 

privacy of the end users. At this stage, once a possible solution is elaborated, its techno-economic feasibility must be 

proved. This means that the research questions this dissertation is trying to find an answer to are, first, if a service such 

as the DSM Evaluation Tool can become a commercial product and second if NILM techniques can be applied at 

secondary substation level yielding good results. 

A 3-step process was selected to verify the research questions and is composed by: 

1. An extensive literature review of NILM and LV grid monitoring to assess the software and hardware 

requirements to deploy such a service in the LV grid and understand which flexible loads are considered a 

resource by the DSOs 

2. Market feasibility analysis to evaluate the financial viability, the innovative connotation of the service and a 

first favorable application 

3. Testing of NILM techniques at the secondary substation level to prove the technical feasibility of the service 

This thesis is realized within a commercial context in collaboration with Eneida.io, a company delivering LV grid 

assessment services for DSOs, hence the final goal of this dissertation is to assess if the DSM Evaluation Tool could 

represent a commercial service to add to their portfolio of services. The adopted approach is considered effective for 

reaching this scope because it takes into consideration both technical and economic aspects giving a broad vision on 

the topic. The employed method in the NILM testing phase allows the complete reproducibility of the results, in fact, 

data and algorithms are all available to the public and this is considered a strong point for benchmarking and improving 

the work. In addition, the extensive literature review allows not to start from the ground zero, but on top of what the 

research did creating a significant advantage. The limitation of the used method is the difficulty to dig into the details 

of each section and perform a specific and exhaustive analysis when a very wide approach to the problem is selected. 

Indeed, both the technical and the economic analysis will need a further, more detailed investigation to actually develop 
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a commercial service. Overall, the adopted line is chosen as a good tradeoff to estimate the potential and the restrictions 

of the DSM Evaluation Tool and understand if time and resources are worth to be invested on the topic. 

 

2. Non-Intrusive Load Monitoring (NILM) for demand response and grid 

planning 
 

In the previous chapters, Non-Intrusive Load Monitoring (NILM) was explained as a concept and its potential applications 

for demand response and grid planning were shown. Now, this chapter focuses its attention on the logic and algorithms 

that are behind the energy disaggregation techniques, on the infrastructure needed at the LV network level and on 

which flexible assets have value for the DSOs. The scope is to understand the requirements of the whole system 

architecture and define the features that the DSM Evaluation Tool should include. 

2.1. Software requirements 
 

2.1.1. Nonintrusive load monitoring approaches 
 

Load disaggregation, also known as nonintrusive load monitoring (NILM), is a technique to deduce what appliances are 

used in a household and their individual electricity consumption analyzing changes in current and voltage at smart meter 

level. The name NILM is since this methodology present itself as an antithesis to the intrusive load monitoring 

techniques that require a measurement at a single appliance level. The measurement at the single point of the house 

allows indeed to reduce significantly the intrusiveness of the hardware for the householders and cut the installation and 

operation costs. 

The decomposition of power consumption at house level into its components is possible because every electrical load 

presents a peculiar energy consumption pattern, often called appliance signature, that can be recognized by 

disaggregation algorithms. Diverse approaches have been adopted to recognize the appliances signatures, but they can 

be grouped in two main categories, event-based algorithms which try to identify the On/Off transitions in electricity 

consumption and non-event-based which identify if an appliance is On during the whole sampled record. The former 

method is shown in Figure 9, while the latter in Figure 10. 
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Figure 9. Event-based disaggregation algorithm [29] 

 

Figure 10. Non-event-based disaggregation algorithm [29] 

The load disaggregation process is divided into three stages: data acquisition, features extraction and learning and 

classification [32] [33].  

2.1.1.1. Data acquisition 

 

The data acquisition consists in obtaining the aggregated load consumption with the appropriate data granularity that 

depends on the features of the appliance we want to extract and the type of NILM algorithm used for the identification. 

For instance, when transient features and noise generated by the appliance are used to isolate a load, a very high 

sampling rate will be necessary to capture these characteristics in the total electricity consumption. Table 1 shows which 

sampling rate corresponds to the desired feature to extract from the aggregated measurement. 

Table 1. Data acquisition characterization 

Feature extraction Steady-state analysis Harmonic Analysis Transient/Noise Analysis 

Sampling rate 1/60 Hz – 1 Hz 1 Hz – 40 kHz 40 kHz – 1 MHz 
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2.1.1.2. Feature extraction 

 

The next step, the features extraction, include data optimization and processing [34] to identify the events in the total 

consumption that represent a change in state of one or more appliances. The most common methods to detect these 

events are either using steady-state signatures or transients ones. Steady-state means that changes in steady state real 

or reactive power are employed to recognize whether an appliance is On or Off. Transient methods instead capture 

transient signatures like shape, size, duration to define a load. Some different methods are avoiding the processing of 

data analyzing the raw voltage and current in the frequency spectrum. 

Four different type of signature can be found in a normal household. The type of signature influences the finding 

accuracy of the different algorithms, then a method that performs really good with one type can be unappropriated to 

find an appliance belonging to another type. The four types can be divided as follow: 

1. Appliances with only two states, On and Off, like toasters or incandescent light bulbs. 

2. Multi-state appliances with a finite number of operating states. Washing machines, hairdryers, dishwashers 

and fans are part of this category. 

3.   Continuously variable devices (CVD) with a non-finite number of states that are particularly hard to find for 

the identification algorithms. 

4. Appliances with a continuous power draw like smoke detectors or telephone sets. 

Steady-state methods can be divided into three categories with different identification accuracy for different appliances 

typology. Table 2, highlights the main features, strengths, and drawbacks of each of them [35]. 

Table 2. Steady-state methods 

Method Features Advantages Drawbacks 

Power change Steady-state variation in 
active and reactive power 

Power intensive 
appliances can be easily 

recognized, low data 
granularity needed 

Simultaneous state 
transitions and power 

appliances overlap in P-Q 
plane significantly 

decrease the 
performance. Type II, III 

and IV appliances are 
difficult to recognize 

V-I trajectory V-I trajectory patterns: 
asymmetry, looping 

direction, area curvature 
of mean line, self-

intersection, slope of 
middle segment, area of 

the left and right 
segments and peak of the 

middle segment 

Appliances have a unique 
V-I curve that allows their 

categorization 

Computationally intensive, 
no distinctive shape for 

low power loads, 
performance decreasing 

significantly with the 
number of appliances 

Frequency domain Higher order steady-state 
harmonics 

The complex impedance 
allows very good 

appliances classification 

High data granularity 
required, poor 

performance with type III 
appliances, unable to 
separate overlapping 

activation events 
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Transient-state methods analyze instead the pattern that the appliances leave in the total load consumption before 

they reach a steady state. Studies show that the transient behavior of each appliance is much more diverse and less 

overlapping than steady-state one giving a higher degree of precision for load identification. Nonetheless, they require 

a higher sampling rate, hence more expensive infrastructure. Table 3 shows the main characteristics of the used 

transient-state approaches. 

Table 3. Transient-state methods 

Transient Method Features Advantages Drawbacks 

Transient power Transient response time 
and transient energy 

Good performance with 
appliances with similar 

power consumption 

The very high granularity 
of data required, not 
suitable for type IV 

appliances 

Start-up current transients Shape, duration and size 
of on/off transients, 
current spikes and 

response time 

Good classification 
because of distinctive 
transient behavior or 

appliances 

Unable to disaggregate 
type II and IV loads, 

sensitiveness to external 
noise, poor performance 
with simultaneous start-

ups 

High-frequency voltage 
noises 

Noise FFT Good performance with 
multi-state devices and 
consumer electronics 

Computationally heavy, 
appliance-specific 

 

In addition to steady-state and transient-state techniques, some non-traditional methods are used to recognize the 

appliances. These approaches take into account that the operational states of the appliances are not completely 

independent one from each other, then not only measured electric data are used as inputs. For example, when the 

induction cookers are on it is more likely that also the oven will be so or if it is a really hot day the AC consumption will 

be higher than normal. 

2.1.1.3. Learning and classification 

 

Eventually, load identification algorithms need to recognize the appliances state from aggregated measurements. The 

different techniques can be classified as supervised, semi-supervised and unsupervised learning. 

Supervised learning is used in most of the cases to train the algorithms to identify the different loads, then a dataset of 

labeled data is necessary. In optimization-based methods, the aggregated power consumption is matched with a 

combination of appliances present in the database through an error minimization process. Integer programming and 

genetic algorithms have been employed for this type of approach [36].  

Another adopted approach, the pattern recognition, consists in singularly matching the changes in state with a pool of 

features already available in the database. Pattern recognition techniques are the most used by researchers and include 

clustering methods, Bayesian approaches detecting the most likely of the potential appliances states, Support Vector 

Machine (SVM) classifying harmonics characteristics, Hidden Markov Models (HMM) and Artificial Neural Networks 
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(ANN) which demonstrated great potential for their ability to introduce temporal and state change information [17]. 

The combination of different methodologies showed a 10% increased performance compared to a single approach [35].  

The need of training data represents one of the barriers to a broad diffusion of NILM and for this reason, semi-supervised 

and unsupervised training methods have been developed in the last years because they require minimal or no previous 

information. The most used approaches are based on classification or on probabilistic models using a variation of HMM. 

These methods generally have a lower accuracy than the supervised ones, but they are appealing for the companies 

working in the NILM ecosystem for their much easier deployment. 

2.1.1.4. Algorithm hosting 

 

One additional feature distinguishing NILM algorithms has a more practical nature and it is the place where they are 

hosted. They can reside in online cloud services with the main advantage that the raw data are available also for off-

line processing allowing a dynamic change of the algorithm with updated or customized versions. On the other hand, it 

would require a huge transfer of data and dedicated computation for each customer on the cloud. A cheaper option 

would be to host the algorithm onboard the measuring device reducing the communicated data to the essential 

information. However, it would not be possible anymore to log permanently the raw data that would be periodically 

overwritten. 

2.1.2. Energy datasets 
 

In the previous sections, it was highlighted the importance of training data to perform an accurate disaggregation of the 

different appliances mostly if supervised learning methods are applied. Indeed, the majority of NILM algorithms must 

be trained on real data to recognize the appliances signature in the aggregated load consumption and even the 

completely unsupervised methods need a wide range of data for their verification and tuning. 

Since 2011, many datasets from different institutions were made public in order to objectively compare the results and 

boost the advancement of the research on the subject. Before then, the researchers were working completely 

independently on their own libraries making extremely complicated to benchmark the different disaggregation 

approaches and resulting in slow progress.  

The most used data set among the researchers is the Reference Energy Disaggregation Dataset (REDD) made by the MIT 

and publicly available. REDD includes the aggregated data of 6 households in the US with different granularity up to 15 

kHz. Around 20 circuits per household are sub-metered in order to make possible the labeling of the different 

appliances. Apart from REDD, many datasets were made available in the last years measuring the aggregated data of 

multiple houses located mainly in the US and in Europe. These sets of data also contain a broad range of deferrable, 

energy-intensive loads and DER such as heat pumps, electric vehicles, and solar photovoltaics. This last feature makes 

them a valid instrument to test algorithms able to identify flexibility sources in the electric grid for demand response 

and grid planning application that represent the scope of this thesis. 

Table 4 offers a detailed overview of the most valuable energy disaggregation datasets available in the market specifying 

their characteristics and provenience [37]. 
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Table 4. List of open source energy disaggregation datasets 

Dataset Sampling 
rate 

Duration Number of 
houses 

Classes Ground 
truth 

Origin 

Dataport 1-minute 4+ years 
(still 

growing) 

722 ~70 Submeter 
channels 

US 

REDD 15 kHz/1 Hz Several 
months 

2/5 ~20 Submeter 
channels 

US 

BLUED 12 kHz 1 week 1 ~30 Labelled 
events 

US 

UK-DALE 16 kHz/1 Hz 2 years 3/6 ~40 Submeter 
channels 

UK 

PLAID 30 kHz 5 seconds 55 12 Individual 
appliances 

US 

WHITED 44 kHz 5 seconds 9 46 Individual 
appliances 

Multiple 

Tracebase 1 Hz 1 day 158 43 Individual 
appliances 

Germany 

AMPds 1 minute 2 years 1 19 Submeter 
channels 

Canada 

RAE 1 Hz 72 days 1 24 Submeter 
channels 

Canada 

iAWE 1 Hz 73 days 1 33 Submeter 
channels 

India 

REFIT 8 seconds 2 years 20 9 Submeter 
channels 

UK 

 

For the specific purpose of this thesis public data sets with labeled data at secondary substation level were not found, 

hence the consumption at LV feeder level will be assembled aggregating the measurements from different households. 

The details of this process will be explained in a dedicated section in the chapter relative to the NILM testing. 

2.1.3. Evaluation metrics 
 

Nonintrusive load monitoring is generally considered as a classification problem, then its performance can be expressed 

as in Equation 1. [38]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠 𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠 𝑜𝑟 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠
                                                (1) 

The fact that the performance of NILM algorithms is strictly correlated to the number of appliances considered, to the 

adopted hardware for data collection, and to the granularity of the used energy data set, created disagreement about 

the most suitable metric for method comparison [39].  

Different methodologies are used to evaluate the accuracy of the disaggregation problem, some of them are explained 

here. 

Equation 2 is the fraction of total energy assigned correctly that measures the fraction of the energy consumed by the 

appliances and the predicted one. 
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𝐹𝑇𝐸 = ∑ 𝑚𝑖𝑛 {
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Equation 3 is the total disaggregation error that is the difference between the predicted energy consumption and the 

actual one measured for each appliance and normalized by total energy consumed. 

𝑇𝑒𝑟𝑟𝑜𝑟 =
∑ |𝑥𝑡

(𝑛)
−𝑥̅𝑡

(𝑛)
|𝑁,𝑇

𝑛=1,𝑡=1

∑ 𝑥𝑡
(𝑛)𝑁,𝑇

𝑛=1,𝑡=1

                                                                      (3)   

Equation 4 is the proportion of error per appliance which evaluates the difference between the proportion of the energy 

assigned to each appliance and its measured actual consumption. Most often, its normalized version is used, Equation 

5, the Normalized error by appliance. 

𝑃𝑒𝑟𝑟𝑜𝑟 = |∑ 𝑥𝑡
(𝑛)𝑇

𝑡=1 − ∑ 𝑥̅𝑡
(𝑛)𝑇

𝑡=1 |                                                            (4) 

𝑁𝑒𝑟𝑟𝑜𝑟 =
∑ |𝑥𝑡

(𝑛)
−𝑥̅𝑡

(𝑛)
|𝑇

𝑡=1

∑ 𝑥𝑡
(𝑛)𝑇

𝑡=1

                                                                      (5) 

The most used and reliable metric used by NILM researchers is the F1 score and it is based on Equation 1. First, some 

concepts must be introduced for its definition, the precision in Equation 6 and the Recall in Equation 7 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                        (6) 

And the  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                           (7) 

The terminology of these formulas is explained by the Contingency Matrix for binary classification in Table 5. 

Table 5. Contingency Matrix for binary classification 

  True label 

  Positive Negative 

Assigned  

label 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

The precision defines the ratio of True Positive in the universe of all the examples assigned as positive whereas the recall 

is the ratio of True Positive in the universe of all positive examples in the data set. Hence, the F1-score can be defined 

as in Equation 8. 

𝐹1 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                   (8) 

The F1-score evaluate the percentage of energy correctly allocated to each appliance and can be explained as a weighted 

average of the precision and the recall. Higher values of F1-score mean a better accuracy of the disaggregation method. 
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2.2. Hardware requirements 
 

2.2.1. Low voltage grid characterization 
 

The understanding of low voltage (LV) grid is fundamental to design the hardware necessary to implement accurate 

NILM techniques at the secondary substation level. 

This thesis considers the LV network in European countries only that significantly differs from other type of systems 

such as the American one. The standard for LV networks in European countries is represented by the 3-phase 4-wires 

distribution voltage level of 230/400 V. Cities and medium-sized town are equipped with underground cable distribution 

systems, while rural areas are serviced by overhanging cables. 

The LV network is clustered in areas corresponding to the MV/LV distribution substations, spaced at about 500-600 

meters from each other. These are typically composed by: 

- 3 or 4-way MV switchboard made of incoming and outgoing load-break switches for the transformer circuits 

- One or two 1000 kVA MV/LV transformers 

- One or two 6 or 8-way 3-phase 4-wire distribution fuse boards to control and protect 4-core distribution cables, 

called “distributors” 

In areas with high load density, a standard size distributor is employed with 4-way link boxes located either in a manhole 

at a street corner or in weather-proof cabinets above the ground situated against the wall of a building. Link boxes are 

also in place to connect a distributor from one secondary substation with one from a neighboring substation. This 

arrangement makes the system flexible and a substation can be taken out of service without interrupting the electricity 

supply. This configuration for urban areas is shown in Figure 11. This principle is not adopted in less densely populated 

areas for economic reasons and conductors of reduced dimension develop radially [40].  

 

Figure 11. LV network configuration in densely populated areas 
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LV electricity consumers 
 
When talking about NILM techniques it is important to define the amount and type of consumers connected to the 

distributors. The current-rating requirement for distributors and dictates indeed by the number of customers to be 

connected and the average consumption per consumer.  

The two main parameters that limit the nature of the distributors are: 

- The maximum current that the conductor can carry without overheating 

- The maximum length of the cable that, when in maximum current conditions, will not surpass the voltage drop 

limit 

These constraints limit the magnitude and the position of the loads that want to be connected to the LV network. 

The LV network generally serves all type of residential users, little commercial and industrial activities. For the type of 

LV networks built in Europe, the maximum permitted loads connected to either 120 V single phase feeders or to 240/415 

V 3-phase ones are shown in Figure 1 [40]. 

Table 6. The maximum permitted loads connected to a LV distributor 

System Assumed max. permitted current KVA 

120 V 1-phase 2-wire 60 A 7,2 

120/240 V 1-phase 3-wire 60 A 14,4 

120/208 V 3-phase 4-wire 60 A 22 

220/380 V 3-phase 4-wire 120 A 80 

230/400 V 3-phase 4-wire 120 A 83 

240/415 V 3-phase 4-wire 120 A 86 

Nonetheless, practices radically change from one distribution network operator to the other and no standardization 

exists in the sector. In addition, it is not possible to establish the number of customers per feeder just dividing its power 

capacity by the contracted power of the LV customers because this represents a condition that is never reached, and it 

is not used to design the network. The most influencing factors for connecting new loads to the LV network are: 

- The extension of the existing distribution network which the new load is to be connected to 

- The total load already provided by the distribution network 

- The location of the new load in the distribution network with a focus on the nearness to the secondary 

substation 

This lack of standardization makes the characterization of the LV network extremely difficult especially regarding the 

number and nature of loads that are connected to a distributor. For this reason, a load disaggregation service deployable 

at large scale in the low voltage network must work in absence of this information and be able to adapt to the single 

situation. The rule of thumb in the electricity network sector is there is a MV/LV transformer every 100-300 customers 

and this would mean between 5 and 15 customers per single phase obtained dividing by the number of distributors (6-

8) and the number of phases (3). The selection process for the number of customers will be explained in the chapter 

relative to the implementation of NILM techniques.  
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2.2.2. Advanced metering infrastructure design 
 

The concept of load disaggregation at secondary substation level aims to identify and track the electric loads in the LV 

network that represents a source of flexibility to perform demand response schemes and improve the network planning 

and operation. The ideal location to monitor the LV network is represented by the MV/LV substation and it is where the 

advanced metering infrastructure should be placed. This position represents multiple advantages for load 

disaggregation purposes because it is where the monitoring infrastructure is already placed for the management of the 

LV grid and because it limits the costs and preserves the customer's privacy if compared to the single-house smart 

meters. 

The meter placed at the MV/LV transformer derivations is composed by three main parts: 

- The measuring unit, where current and voltage are measured 

- The meter unit, hosting the microprocessor processing the raw data 

- The communication unit, that sends the data to the grid operator 

Figure 12 gives an explanatory overview of the composition of the considered metering infrastructure. 

 

Figure 12. The composition of the metering infrastructure 

The meter unit (or metrology card) and the communication unit are often hosted together in the same casing for 

sake of simplicity, while the measuring unit is placed outside to reach the different LV feeders. 

The meter unit samples current and voltage waveforms according to the sampling rate of the A/D converter and 

extract the average complex, active and reactive power. The entire unit is composed by: 

- Currents and voltage sensors that record the current and voltage of the individual phases. The sensors need to 

read the values for every single-phase derivation of the MV/LV transformer, hence 16 to 24 G-clamps, grouped 
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by three for every 3-phase feeder are placed. Figure 13 shows how the G-clamps are attached to the LV feeders 

and connected to the metrology card and communication unit in the up-left corner. 

 

 

Figure 13. Meter unit connections 

- Analog-digital converters transform the analog inputs into digital values and feed them instantaneously via 

calibration stages to a signal processor. This represents one of the most important components when talking 

about load disaggregation because it defines the sampling rate of the meter. 

- The microprocessor, responsible for the signal processing and all the operations done in the meter. The 

microprocessor must be a tradeoff between performance, power consumption and monetary cost to be 

suitable for large-scale deployment. 

- Storage and memory are important features of the meter because RAM is used for intermediate storage 

operations and it can be used for disaggregation becoming a limitation for the accuracy of NILM techniques. 

The communication unit is used instead to communicate the measurements to the DSO. This part also includes a 

microprocessor for performing the needed operations, but it is rather necessary to focus on the communication 

functionalities of the device. The employed networks are generally the Wide Area Network (WAN) and the Home Area 

Network (HAN) which are characterized by a different frequency of data. The lack of standardization makes possible 

that different transceivers can be used for data communication and the devices can be equipped with more than one 

to be more flexible, 

- WiFi, 

- Cellular network (2G, 3G, 4G), 

- ZigBee, 

- Radio frequencies  

- Power Line Communication (PLC). 

The devices to be installed in the secondary substation are generally self-powered with batteries with several years of 

autonomy for the ease of installation. 
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Hardware limitations 

The advanced metering infrastructure can represent a limitation for the energy disaggregation techniques if certain 

requirements are not fulfilled and these restrictions are due to the following features: 

- The sampling frequency of the A/D converter, when really high granularity of data is needed such as in 

techniques analyzing the transient state of the appliances 

- The processing power of the microprocessor is strictly correlated to the cost and power draw of the device. 

These two features are really important when the device is though for large-scale deployment and it is powered 

by a battery 

- The storage capability of the memory since on the flash the NILM software is saved and a great amount of RAM 

is needed when algorithms from ML and Optimization fields are involved 

- Data transfer rate and cost due to the used communication interface if the raw data are sent to a cloud storage 

for processing 

The limitations described above do not represent a barrier for the deployment of the technology at the current status 

of development of the field but some important constraints that must be taken into consideration when designing to 

load disaggregation service for a certain device or vice versa. 

2.3. Critical loads to disaggregate 
 

The typical residential customer electricity consumption is composed of several energy-intensive appliances that can be 

targeted for demand response programs such as heat pumps, electric water heaters, electric furnaces, EVs, washing 

machines, etc. The ease of use of these appliances for demand-side management is a complicated combination between 

the intrinsic characteristics of the device (time of use, type of consumption, etc.) and behavioral aspects related to the 

people that are using them (user interaction, user perception, etc.). The scope of this work is not to study the best 

appliances to target but study the individuation of some of them for DR purposes. 

Electric Vehicles, Heat Pumps and PV systems are selected for this study. The selection process was determined not by 

the literature review, but by the contingent situation of the partner company. Now, the UK represents the most 

interesting market for grid assessment services in Europe because of the aging electricity network combined with the 

fast electrification of the heating and transport sectors. In addition, the regulatory framework allows the DSOs to look 

for residential flexibility and launch public tenders [12]. These facts make the market ready for real-world 

implementation and drive the choice of appliances to target. 

In the next paragraphs, the reason for addressing the targeted appliances will be explained in more detail. 

2.3.1. Electric vehicles 
 

The Electric vehicle (EV) is becoming an important load to be considered for smart grid analysis. The number of publicly 

accessible EV charging points is growing by 72% every year adding a significant stress on the distribution grid [41]. Home 

EV charging recently entered the market but its effects on the balancing and management of the LV network are to be 

considered non-marginal. In fact, whereas big charging stations, generally connected to the MV lines are constantly 
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monitored and easily controllable, residential charging points are not, and their consumption is aggregated to the total 

house and difficult to forecast. The severity of the residential EV charging impact is highly dependent on the charging 

time and duration, the applied utility rate and the season of the year. A secondary advantage of isolating the EV 

consumption from the total household consumption is to provide an exact value for EV monthly energy consumption 

creating value for the end-users. 

The single charging station direct monitoring would be highly unpractical and costly, hence NILM algorithms present 

again a good alternative to disaggregate the EV load from the rest of the house. Despite the availability of many 

algorithms in the field of load disaggregation, few of them specifically target EV and they often require extensive training 

and high computational load. The greatest challenge is represented by the fact that EV load signal is characterized as a 

square wave of high amplitude and long duration (from 30 to 200 minutes) that can be easily confused with the long 

cycles of heat pumps during really cold or hot days especially in presence of other smaller appliances power signals and 

fluctuating residential noise [42]. Other problems in using advanced NILM algorithms not designed for EV tracking are 

the low granularity of data at SM level that does not allow the usage of transient characteristics, and the absence of a 

large variety of ground-truth EV signal to train the algorithms that mirror the diversity of residential EV chargers in the 

market. 

2.3.2. Heat pumps 
 

The progressive electrification of the heating sector resulted in a consistent growth of the electric load in the form of 

heat pumps in the last 10 years. Heat pumps represent 15% of the primary energy consumption in mature markets like 

the US and grow at a quick pace all over Europe with France leading for the number of installations with 27% of annual 

increase [43]. Heat pumps currently outperform conventional fossil fuels-based systems in term of thermal efficiency 

and represent a great opportunity for decarbonization in energy system with high penetration of renewable sources 

[44]. 

The growth of heat pumps generates a challenge for the distribution network operator. The general 10 kW thermal 

output heat pumps are equipped with 2.5 kW electric compressors with high starting current and with the tendency of 

depressing the LV feeder voltage especially if many units are connected with the possible risk of collapse [45]. In 

addition, an increased number of heat pumps could generate local grid congestion and demand peaks mostly in case of 

switching from fossil fuel-based system in particular areas of the distribution network. However, because of the thermal 

inertia of the buildings, heat pumps become an optimum example of a flexible or deferrable load. In fact, if operated in 

a smart way, heat pumps would help to address the LV issues and also to integrate more distributed energy resources 

in the distribution network. To give some examples, a simulation study from Denmark (Danish task 3 report) showed 

that the optimization of the heat pumps portfolio could decrease by 18% the peak load at distribution feeder level 

resulting in a nearly flat load consumption along the day. A German study also proved that the pooling of heat pumps 

under direct load control and operating balancing services could generate up to 125 € of cost reduction for single heat 

pump operation costs [41]. In addition, an improved building insulation and buffer water tanks could significantly 

increase the flexibility of this resource. 
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The heat pumps load in the residential sector is highly fluctuating and strongly influenced by behavioral patterns and 

weather conditions. The precise forecast and control of air conditioning load at house or neighborhood level becomes 

then highly important to avoid grid events such as exceeded capacity or voltage problems. The independent monitoring 

of each heat pump would be unpractical for its complication and costs. The use of NILM algorithms at one house or 

much more aggregated level to disaggregate the heat pump load from the total consumption presents a good potential 

for heat pump load management. 

2.3.3. Solar photovoltaic systems 
 

Solar photovoltaic is the faster-growing energy market in 2017 with a global increase in capacity by 50% only in the last 

year [46]. The accurate forecast of PV power production is crucial for energy utilities to maintain the system balance 

and minimize the use of fossil fuels [47]. Utilities with scarce accuracy in solar energy prediction often experience large 

expenses due to excess fuel consumption or emergency purchases of electricity from other utilities [48].  

Residential photovoltaic will represent 56% of the total solar capacity in 2020 with more than twice installed power 

than utility-scale projects [share of PV]. Currently, the majority of the utilities cannot measure the power output of 

residential photovoltaic because they can only access the net power reading of a household, that is the production from 

PV panels subtracted from the house consumption [49]. The inability to differentiate the house production from its 

consumption at smart meter level generates an increased uncertainty in energy forecasting leading to a more 

complicated balancing of the system and slowing down the deployment of new PV capacity. Indeed, a growing amount 

of distributed photovoltaic generation needs higher reserve requirements at the system level and violations of voltage 

and line capacity constraints during the peak production hours [50].  

Some strategies to mitigate the distributed PV drawbacks are curtailment strategies, control of converters 

active/reactive power, PV self-consumption schemes and dispatch of local power flows to network-safe power 

consumption routes [51][52]. In order to implement these solutions, the real-time power production measurements 

from PV installations must be available. Nonetheless, as previously mentioned, the PV facilities are hardly ever under 

direct load measurement and a series of factors such as privacy issues, conflicts between different owners of the 

metering infrastructure and lack of standards for monitoring and aggregation measurements and communication are 

playing against its realization. 

A possible alternative to direct PV monitoring is the disaggregation of PV generation from the aggregated power 

measurements of a group of prosumers. The problem of power consumption disaggregation has been highly 

investigated to perform Non-Intrusive Load Monitoring (NILM), but its application to solar disaggregation is relatively 

new. A significant difference between classical NILM and solar disaggregation is represented by the fact that the 

extraction of PV production from the net power signal cannot be achieved only detecting “signatures” in the data like 

transitions, steady-state features and harmonics [51]. In fact, as visible in Figure 14 shows the net power reading of the 

aggregated consumption, it is impossible to distinguish whether during the day the reduced export to the grid in the 

middle of the day is due to cloud cover or load usage. 
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Figure 14. Net-metered consumption of a household with PV system 

To overcome this problem, all the different available disaggregation algorithms rely on the modeling of PV generation 

as a function of the global horizontal irradiance (GHI) that is measured either in place or in the closest weather station. 

In addition, a transpose model is needed to project the GHI into a number of pre-defined differently oriented tilted 

planes to model the generation from installations with different configurations [51]. This represents a crucial factor in 

urban contexts where rooftop PV tilt and azimuth configurations are dictated mainly by the orientation and shape of 

the rooftop. 

The statement of the problem of solar PV disaggregation highlights its importance even in a case where regular NILM 

wants to be carried out. In fact, if the disaggregation of house load is to be performed and the PV production is not 

separated from the household consumption, the majority of NILM algorithms would not be able to distinguish correctly 

the different appliances because of the PV interference.  

In Figure 15, an example of disaggregated solar generation from the net measurement at house level is shown to remark 

the fact that oscillation in total metered consumption in the middle of the day can be either due to intermittency in 

solar generation or appliances usage making solar disaggregation crucial to solve this issue. 

 

Figure 15. Solar disaggregation from the single house with PV panels 

The literature review allowed to define what is the state of the art in term of NILM software, advanced metering 

infrastructure for LV grid monitoring and to identify which flexible assets represent a resource for the DSOs and why. 

This represents the foundations on which the next chapters are built on. Indeed, the economic analysis is based on the 
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system constraints and on the potential of DR ancillary services and the testing phase employs the most advanced 

NILM algorithms and data analysis tools for load disaggregation research. 

 

3. Market Feasibility 
 

A short Market feasibility analysis was performed to assess the viability of the idea to become a commercial service. 

The target market is the UK because it is the only market in Europe currently opening the access to the ancillary services 

to the DSO [12] , hence the only one where a commercial service can be deployed.  

The market feasibility analysis is composed of 3 parts: 

1. Study of the UK regulatory framework and identification of a possible use case to assess the legal feasibility 

2. Cost-Benefit Analysis of the DSM Evaluation Tool to evaluate the financial viability 

3. Competition analysis to assess the innovative connotation of the DSM Evaluation Tool and identify possible 

threats 

At the end of this process, it will be possible to evaluate if the DSM Evaluation Tool can become a commercial service.  

3.1. Study of the UK regulation framework 
 

The UK was the first country to allow the participation of demand-side resources to the electricity markets. The situation 

at the present day can be described as follow: 

- Demand response contribution is accepted in almost all the balancing services as well as demand aggregation. 

Nonetheless, the product design is still immature for full end user participation. 

- The capacity market is open to DR resources, but its impact is still irrelevant compared to the generation. 

- The balancing mechanism and wholesale market access are still restricted for independent aggregators, that 

can participate only through a bilateral agreement with the retailer/BRP. 

- Distribution network services like voltage control and congestion management are allowed for independent 

aggregators only through a bilateral agreement with the retailer/BRP. 

Despite the early start among the European countries in term of demand response regulations, the difficult 

communication between providers, policymakers, Ofgem, and National grid did not create a mature market for its 

implementation. In fact, resource evaluation, baseline, bidding process, and other procedural and operational 

requirements are still inappropriate for demand-side response providers slowing down the deployment of the resource.  

Ofgem is promoting demand-side flexibility as a useful tool to tackle congestion management and voltage control 

boosting innovation measures over capital investment and creating a Low Carbon Fund (£500m over 5 years). As a 

result, the majority of the DNOs are running demand-response trials.  
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The aging grid together with the growth of embedded generation, interconnection, large transmission-connected 

renewables and stress on the LV grid lamented by the DNOs are making the business opportunity for demand response 

higher than ever. However, because of the inadequate regulatory framework and design choices, the chance is still 

pending [12].  

Possible use case  

DSM programs are becoming more geographically localized and this can be noticed in some practical example such as 

the call for flexibility that UK Power Networks (UKPN) is carrying out. UK Power Networks is the distribution network 

operator for electricity covering South East England, the East of England and London. It manages three licensed 

distribution networks (Eastern Power Networks, South Eastern Power Networks and London Power Networks) which 

together cover an area of 30000 𝑘𝑚2 and approximately one quarter of UK population. The UK power system 

experienced a sharp growth in renewable energy installation peaking at 12 GW of solar generation and 16 GW of wind 

capacity at 2017, capable to surpass consumer demand at certain times during summer. 

UKPN end customers driven by energy efficiency, new technologies, and government policies are changing their energy 

consumption pattern towards a more electricity intensive one reducing the country dependence on fossil fuels. The 

electrification trend, together with the expected rapid growth of electric vehicles penetration and more than 90% of 

solar capacity directly connected to the distribution system are creating issues to UKPN aging network. However, instead 

of slowing down the process leading towards a clean and secure energy supply, UKPN is renewing its role to face these 

challenges. Indeed, in the 2017 UKPN Flexibility design consultation is affirmed that “To continue to support the low 

carbon transition in a safe and cost-effective way our role will continue to evolve. Instead of acting as the passive 

manager of a network of cables and assets connecting centralized generators to homes and businesses, we need to 

become a more active manager of a system that enables local communities, renewable generation, small and medium 

sized businesses, prosumers and consumers to access the energy and flexibility markets, all whilst making sure the lights 

stay on” [53].  

In UKPN flexibility program the elasticity of end users’ electricity demand will be crucial to manage the uncertainty and 

complexity of this new power network. Response from generators, demand side providers and electricity storage 

resources will support the efficient management of planning and operations. The flexibility resources will be used for 

various scopes from outages avoidance to manage the uncertainty related to demand growth for investment decision 

making.  

UKPN specifies that the goals of the flexibility program at the distribution system level are to: 

- Use flexibility to manage uncertainty as to when we invest in network infrastructure;  

- Use flexibility where it is cheaper than the traditional network solution;  

- Procure flexibility efficiently using competitive mechanisms where possible;  

- Provide locational signals for new flexibility capacity;  

- Support wider adoption of distribution flexibility by demonstrating that it is reliable, safe and secure;  

- Facilitate the development of distribution flexibility markets to benefit the system as a whole, and  

https://en.wikipedia.org/wiki/Distribution_network_operator
https://en.wikipedia.org/wiki/Distribution_network_operator
https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/South_East_England
https://en.wikipedia.org/wiki/East_of_England
https://en.wikipedia.org/wiki/London
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- Evidence and share learning to inform energy policy and regulation.  

 

The localized nature of the described program is clear, and it is very different from the DR programs previously offered 

by the TSO National Grid where the position of the flexibility resources in the electricity network was irrelevant [54]. On 

the other hand, UKPN program is designed to address a specific distribution network location where system constraints, 

like maximum capacity exceedance, are likely to appear. When these events will occur, the service providers will be 

asked to deliver their contracted flexibility.  

3.2. Cost-Benefit Analysis of the DSM Evaluation Tool 
 

In the past chapters, it was explained the potential of NILM at the secondary substation to identify, manage and untap 

the flexibility resources of the LV grid and deploy ancillary services for the DSO. In addition, the UK presented to be a 

market ready for this kind of applications with a mature regulation framework and DSOs launching tenders for flexibility 

at low voltage level.  

Before taking on this new project, a prudent management needs to conduct a cost-benefit analysis (CBA). The CBA is a 

process that businesses use to analyze decisions; all the potential costs and revenues generated by the completion of a 

project must be accounted and compared to define if it is financially feasible. The CBA is generally divided in three 

phases [55]: 

1. Compilation of a list of all the costs and benefits associated with the selected project. The costs should include 

all direct and indirect costs, tangible and intangible ones such as opportunity cost or risk associated costs. 

Parallelly, all the tangible and intangible benefits must be accounted. 

2. Application of a common unit of monetary measurement to all the listed costs and benefits. This passage is 

generally complicated when intangible cost/benefits must be converted. A conservative approach should be 

used not to overestimate the benefits and underestimate the costs. 

3. Quantitatively comparison of benefits and costs to check if the former overweight the latter. If yes, the project 

is financially viable, otherwise, it should be review and adjusted to increase the benefits and/or reduce the 

costs. If in ultimate analysis this is not possible, the company should abandon the project. 

In this chapter, a preliminary CBA for the DSM Evaluation Tool is executed. CBA requires a long and detailed study of 

every aspect of a complicated service such as the one analyzed, and it could be the topic of an entire thesis. The scope 

of this chapter is indeed to perform a preliminary analysis not to find the right proportion between cost and benefits, 

but to assess the financial feasibility of the project with a certain margin of security.  

3.2.1. Phase 1: Cost-benefit compilation 
 

The costs associated to this project are mainly related to the hardware manufacturing and installation, its operational 

costs and the software development. The marketing and sales costs are not considered because too variable on the 

specific case. The benefits are instead the identified value proposition for the DSOs and Energy Aggregators that were 
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mentioned in the chapter relative to the description of the service. All benefits and costs are listed and shortly explained 

in Figure 16. 

 

Figure 16. List of costs and benefits related to the service 

3.2.2. Phase 2. Monetary quantification of costs and benefits 
 

Benefits 

The procedure for the calculation of the benefits is complicated because multiple parties are involved in the deployment 

of the ancillary services and because of the intangibility of some of them. To tackle this barrier a very conservative 

approach is chosen; only the benefits for the DSOs are considered being the DSO the target client for this service. This 

procedure significantly facilitates the quantification of the benefits because now they can be all reconducted to the 

avoidance or postponement of investment in the grid infrastructure. The rest of the benefits are not accounted, but 

they can be considered a strong selling point. The deployment of the ancillary services is not managed by the sole 

partner company, but a demand response aggregator would be needed to trigger the flexibility resources. Hence, the 

entire value of the ancillary services cannot be related to the DSM Evaluation Tool. A percentage of this value will be 

then assigned and discussed later in the chapter.  

The monetary value of the ancillary services in the LV grid is considered to be equal to the cost of upgrading the grid 

because of the electrification of the transportation and heating sectors if any action for their coordination is taken.  
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UK Power Networks (UKPN) released a study where they developed a model to forecast the cost of grid upgrade because 

of the uptake of EVs in Great Britain. This is used as a reference to build an estimate of the benefits following a 3-steps 

process: 

1. The benefits related to the flexibility of the EVs fleet are calculated with UKPN model 

2. The benefits are enlarged to the contribution of heat pumps flexibility. No similar study was found for the UK 

market regarding heat pumps, then the same model is considered valid also for heat pumps. 

3. A sensibility study and discussion are done over what percentage of the found value should be attributed to 

the service considered in the CBA 

Step 1 

The detailed description of the UKPN model goes beyond the scope of this thesis, that will focus instead on the 

outcomes. Even so, to better understand the process, the most important assumptions are listed in Table 7 [56]. The 

model is built on the LV network in the Merton EIZ substation, which is connected to a single 11 kV feeder from the 

closest primary substation. 

Table 7. UKPN model assumptions 

Assumption heading Assumption value 

Electric vehicle assumptions 

Number of EVs The model considers the high EV uptake scenario 
developed by Smart Grid Forum in the UK and visible in 
Figure 17. Merton substation is supposed to follow the 

same trend. 

Charging profile of EVs Sample of 50 different real-world profiles randomly 
distributed in the LV network 

Reinforcement investment decision 

Threshold for voltage violation Voltage drops below 90% of the threshold value 

Investment in response to voltage violations It was assumed that a new secondary substation can 
tackle 150 nodal voltage violations. The associated cost 

to 150 violations is considered 66’000 € 

Threshold for current violation A violation is notified when the current exceeds 160% of 
the cable’s rating, that is considered the emergency 

rating. 

Investment in response to current violations The associated cost to the current violation is 
€220/meter per branch circuit length 
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Figure 17. EV uptake scenarios in Merton 

The model estimates a grid upgrade cost to tackle both voltage and current violations of £86,9k for Merton substation. 

This value can be extended to the whole UKPN grid with the assumption of proportionality between the upgrade cost 

and the number of EVs. The obtained value corresponds to £74,8m up to the end of 2031, that means an average of 

£5,72m per year over the period 2019-2031. The upgrade of the primary network is not considered in this analysis. 

These results need to be taken carefully because they are the outcome of a single bottom-up model. 

Step 2 

The penetration of heat pumps is considered to have a similar impact on the LV network because of the voltage drops 

inducted by the high start-up currents and the elevated power draw that could cause current violations, hence the same 

assumptions of Merton model are employed. In the same study, UKPN elaborated a series of scenarios on EVs and HPs 

growth within its grid and they will be compared to estimate the impact on the grid of Heat Pumps in Figure 18 [56]. 
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Figure 18. EVs and HPs growth scenarios 

Looking at the high uptake scenarios in Figure 3 we can notice that up to 2031 the number of heat pumps is increasing 

significantly reaching nearly 300’000 units, that represents around the 55% of the forecasted number of EVs. In addition, 

the residential EV chargers considered in the study have very comparable power consumption to domestic heat pumps 

around 3 kW and both the appliances present a daily use even if with different load patterns. For these reasons EVs and 

HPs are assumed to have the same impact on the LV grid, then the total investment in infrastructure upgrade is 

increased by a factor of 1,55. The assumption of linearity is adopted in the UKPN study to extend the impact at the 

whole network level, it is considered valid also in this case. Table 8 summarized the total upgrade expenditure necessary 

to tackle the electrification of the transportation and heating sectors without any coordination such as the deployment 

of ancillary services for the DSO. 

Table 8. Summary of the LV network upgrade costs 

Asset Considered Upgrade cost for one substation (k€) Total upgrade cost for UKPN (m€) 

Electric vehicles 86,9 74,8 

Electric vehicles and heat pumps 134,7 115,9 

 

Step 3 

The previous step stated that for the whole UKPN grid the benefit of a coordinated utilization of EVs and HPs through 

the deployment of ancillary services is around 115,9 million €. The percentage of which is to attribute to the developed 

Flexibility service for the DSO is difficult to establish because any study regarding the topic was found in the literature 

to benchmark the estimation. Figure 19 shows the linear relationship between the assigned percentage and the service 

value. 
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Figure 19. Sensitivity on the assigned value to the service 

The developed flexibility service for the DSO potentially includes all the steps to deploy the ancillary services to the DSO, 

but the activation of the flexibility resource that could be done through an internet-connected switch connected to the 

flexible load unless the load is already connected itself. This step is managed by an energy aggregator that needs to 

cover its installation and operation costs and make a profitable business out of it. The aggregator remuneration 

generally comes from the system operator, the DSO in this case, so a part of the generated value must be assigned to 

it. 

The value assigned to the service is then the result of an educated guess and it resides between 75% in case of need of 

an activation switch for every appliance and 100% in case of a future were EVs and HPs will be entirely internet 

connected and there will not be a need for an energy aggregator. The 35% left to the aggregator is enough to cover its 

costs and make a margin out of the sale. Smart plugs are sold indeed around 20-30 £/unit, that multiplied by 769’000 

units in 2031, with a lifecycle of 10 years makes around the 25% of €115,9m value in the considered period. 

The value of the service is indeed between 86,9 and 115,9 million € and it represents the total estimated benefits for 

the application in the whole UKPN grid. 

Costs 

The estimation of the costs is obtained by the partner company that is already performing a monitoring service at the 

secondary substation level. This means that the fixed costs related to the hardware will be kept the same. On the other 

hand, a multiplicator factor will be applied to the operating costs due to the additional data acquisition and transfer. In 

addition, the software development costs will be added on top of the current ones. Table 9 illustrates the cost 

breakdown for one device as indicated by the partner company. 
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Table 9. Cost breakdown for one device 

Item Associated cost (€/unit) 

Hardware manufacturing 1500 

Transport and installation procedure 200 

Data transfer and cloud hosting 10/month 

Data monitoring and system maintenance 150/year 

 

On top of them it must be added the software development cost which includes algorithms, back end, front end, and 

apps. This cost was never calculated before, then it is impossible to benchmark it with previous studies. The chosen 

value is the result of personal experience and it is the equivalent of two years of full-time work for a team of three 

software development engineers. The average wage of this professional figure in Portugal is 25’000 €/year. The value is 

affected by high uncertainty, however, its contribution to the total costs is almost irrelevant due to the utility-scale 

deployment of the service. Moreover, the operational costs must be increased because of the additional data 

transferred and new monitoring requirements. The data traffic is strictly dependent on the type of algorithms employed 

and on their online or offline hosting. These features cannot be established at this stage because the exact software 

requirements are not known. For this analysis, an offline hosted algorithm is taken into account because this type of 

algorithm is yielding the best results during the testing phase. Hence, the data transfer is not considerably increased, 

and the associated cost is believed to grow between 50% and 100%. This wide and conservative range is chosen not to 

underestimate the increased volume of data and because the operating costs are relevant in the total cost estimation. 

The hardware does not need any change from its current situation, then its development is a sunk cost and it must not 

be considered in any economic analysis. 

The calculation of the total costs for the period 2019-2031 requires to bring all the costs to the same year to be summed. 

To do so, Equation 1, the Net Present Value (NPV), is used where 𝐶𝑛 represents the total costs at year n, N the total 

number of years and r the discount rate. 

𝑁𝑃𝑉 (€) =
𝐶0

(1 + 𝑟)0
+

𝐶1

(1 + 𝑟)1
+

𝐶2

(1 + 𝑟)2
+. . . +

𝐶𝑁

(1 + 𝑟)𝑁
                                                       (9) 

The discounting process is correlated to the idea that future cash flows have less value than present ones since the 

former may not occur. Hence, higher risk investments will be correlated with higher discount rates. 

The selected annual discount rate is 3,5% as it is the same used in UKPN study and this is required for comparison with 

the benefits. The variable costs should also be adapted following the inflation rate, but this is not done in UKPN study, 

so it would be advisable not to do it for the cost structure either.  

The total costs for one single substation at present value is calculated and a value between €4889 and €5469 is found 

depending on the increase of data related to operating costs. The total cost for UKPN network is calculated with the 

same proportionality used for the benefits and the development cost is added on top. The total cost value is then 

between €4,37m and €4,86m. 
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3.2.3. Phase 3: cost/benefit comparison 
 

The performed calculations show that the benefits overcome the costs by one order of magnitude. The low value for 

the cost-benefit ratio, between 3,8% and 5,6%, can be explained by two factors, the low-cost infrastructure deployed 

at Utility scale and the extremely high cost of grid infrastructure upgrade. In addition, the deployment of ancillary 

services is considered to completely avoid the need of grid upgrade. The sensitivity on the benefits monetary value is 

shown again and compared with the total costs that are affected by less uncertainty in Figure 20. 

 

Figure 20. Sensitivity on the assigned value to the service compared with the fixed costs 

Then, if the maximum value assigned to the energy aggregator is 25% of the total benefits and the cost of the DSM 

Evaluation Tool infrastructure is the 4,2% of the same value taking the most conservative assumption, it means that a 

minimum of 30% decrease in LV grid upgrade cost is necessary for the benefits to overcome the costs and make this 

service financially viable.  

Once again, it is important to keep in mind that this is a preliminary CBA and its scope is not to assess the exact costs-

benefits ratio, but only to establish if the benefits can actually surpass the costs with a good degree of certainty and this 

hypothesis is confirmed. 

3.3. Competition overview 
 

The study of the national policies and the cost-benefit analysis are the two first important steps in the process to 

evaluate the market viability of the Demand Side Management Evaluation Tool. The former established the maturity of 

the regulatory framework, while the latter the financial viability of the service. At this stage, the analysis of competitors 

in the Energy Disaggregation and LV Grid Assessment sectors is performed to see if the DSM Evaluation Tool represents 

an innovation and if some competitors could represent a threat.  

A competition map is realized to have a better visualization of the considered market and highlight possible trends. The 

map considers all the companies using load disaggregation techniques and LV grid assessment in Europe and in the US. 
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The map is the result of an independent analysis where the considered companies are individually studied through the 

analysis of their websites and third parties’ sources. The parameters used to characterize each company are: 

- Headquarters 

- Customer segment 

- Target market in geographical terms 

- Utilization of NILM techniques 

- LV grid monitoring 

- Involvement in DSM schemes 

- Measure point 

- Hardware sale 

Table 10 shows the obtained competition map where 46 companies are analyzed. 

Table 10. Competition map, C=commercial, I=industrial, SM=smart meter, SS=secondary substation 

Name of the company Headquarters Customer segment 
Target market 
(geography) NILM 

LV 
grid DSM Measure point Device 

AlertMe UK Household UK yes no yes SM no 

Ecoisme PL Household Europe yes no no SM yes 

Eliq SE DSO, Household FR, SE, NO yes no no SM no 

Enetics US DSO, Household US yes yes no SM/SS yes 

e-sylife R Household FR yes no no SM yes 

Green Running UK DSO, Household UK yes yes no SM/SS yes 

Informetis JP Household JP yes no no SM yes 

Ipsum Energy NL Household NL yes no no SM yes 

Luko FR Household Europe yes no no SM yes 

Midori IT DSO, households IT yes no no SM yes 

Mirubee ES Household ES yes no no SM yes 

Navetas UK Household UK yes no no SM yes 

Neurio CA DSO, households US, CA yes no no SM yes 

Powersavvy IE Household IE yes no no SM yes 

Sense US Household USA yes no no SM yes 

Smappee BE Household Europe yes no no SM yes 

Smart Impulse FR Commercial Europe yes no no SM yes 

SmartB DE Commercial DE yes no no SM yes 

Verdigris US C&I US yes no yes SM yes 

Voltaware UK household, C&I Europe yes no yes SM yes 

Wattsekker FR C&I World yes no no SM yes 

Watty SE Household Europe yes no no SM yes 

Bidgely US DSO, households Europe, US yes no yes SM no 

Chai Energy US Household USA yes no no SM no 

Econtagious CA DSO, households US, CA yes no no SM no 
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The chosen criteria to consider the DSM Evaluation Tool innovative is that any other company should present the same 

characteristics; a device installed at secondary substation level using NILM to assess and manage the demand response 

potential of the LV grid to deploy ancillary services to the DSO. Table 11 highlights Eneida.io characteristics following 

the same metrics. 

Table 11. Eneida.io characterization 

 

Any other company in the map presents the same characteristics, then the service is considered innovative. 

Analyzing the competition map primary and secondary threats are identified. A primary threat is a company that could 

develop a similar product in the short term. To do so, it must be a company selling a device to a DSO to measure data 

at secondary substation level and it must provide LV grid analytics with either a vision to manage DSM resources or to 

use NILM techniques. A secondary threat is instead a company that could develop a similar product in the medium-long 

term because it has some relevant barriers towards its realization such as the lack of a hardware or the lack of experience 

in LV grid analytics. A secondary threat can easily become a primary one in case of a partnership with a primary threat 

with complementary characteristics or a resource in case of a partnership with Eneida for the development of the 

service. 

Eeme US DSO, households US yes no no SM no 

Fludia FR Commercial FR yes no no SM yes 

Grid4c US DSO US yes yes no SM/SS no 

Home energy analytics US Household US yes no no SM no 

HOMEpulse FR DSO, household, I US, Europe yes no yes SM no 

Intelen US DSO, household US yes no yes SM no 

Onzo UK DSO, households World yes no yes SM no 

Opower US DSO, Household World yes no yes SM no 

PlotWatt US DSO, household, C US yes no yes SM no 

Powerly US DSO, household US yes no yes SM no 

Qinergy FR Household Europe, Fr yes no no SM yes 

Silver spring US DSO, Municipality World yes yes yes SM/SS no 

Watt is PT DSO, household, C Europe, Pt yes no no SM yes 

Gridkey by Lucy UK DSO Europe, UK no yes yes SS yes 

Grideye by Depsys CH DSO Europe, CH no yes yes SS yes 

Socomec IT DSO Europe, IT no yes no SS yes 

Landys+gyr CH DSO World no yes yes SM/SS yes 

smarter grid solutions UK DSO World no yes yes SM/SS no 

Smart grid networks SE DSO Europe no yes no SS yes 

Gridworks US DSO US no yes yes SS no 

Gridhound DE DSO Europe, DE no yes no SS no 

Name of the company Headquarters Customer segment 
Target market 
(geography) NILM 

LV 
grid DSM Measure point Device 

Eneida.io PT DSO Europe, UK yes yes yes SS yes 
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5 Primary threats and 9 secondary ones are identified in the market. A secondary threat to be considered 

complementary to Eneida.io and then a resource it must have expertise in NILM and DSM and must not have a 

developed hardware. Hence the number of possible resources goes down to 6 companies. 

The market is considered a competitive environment, with a few major players and some big companies among them 

such as Landys+Gyr and Silver Spring by Itron that could represent a big threat. Nonetheless, the quick development of 

a service with innovative characteristics together with the right partnerships is considered a solid way for entering the 

market. 

3.4.  Interpretation of the market feasibility study 
 

The three parts of the market feasibility study which are the analysis of the UK regulation framework, the CBA and the 

competition overview wanted to verify the three main necessary features to make the DSM Evaluation Tool a 

commercial service which are respectively, 

- the maturity of the policies framework regarding the DSO flexibility services, 

- the financial viability and, 

- the differentiation in a competitive environment. 

The study showed that the UK policies are incentivizing the DSOs to employ smart grid tools instead of normal grid 

upgrade to face the transformation of the electricity system creating a market pull for the DSM Evaluation Tool and 

similar services. Moreover, the CBA confirmed the financial viability of the service and the analysis of competitors 

highlighted its innovative nature and possibility to disrupt in the market. Indeed, the DSM Evaluation Tool is believed to 

have all the requirements to become a commercial service. 

 

4. Test of NILM at the secondary substation level 
 

The scope of this thesis includes the testing of the state of the art of load disaggregation techniques applied to the 

secondary substation measurements to assess their potential and limitations for this application. The goal of the 

implementation of NILM techniques at the LV derivations of the distribution transformers is to identify where and when 

flexible loads such as EVs, heat pumps and PV systems are exchanging energy with the grid to be able to manage the 

flexibility loads for the DSO.  

In order to build and implement effective NILM techniques at the secondary substation, the used consumption data 

must fulfill some specific requirements that are listed below: 

1. The granularity of the measurements must be high enough to support the chosen NILM techniques as specified 

in the chapter regarding the Load Disaggregation Approaches 

2. Submetered data of the single appliances are necessary for the training of the algorithms if supervised learning 

techniques want to be used 
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3. Submetered data of the appliances to disaggregate are necessary to evaluate the accuracy of the employed 

algorithms and improve their performance 

These requirements do not represent a problem when NILM techniques are applied to smart meter data because of the 

high availability of open source data from the research institutes, but it becomes a barrier when the problem is moved 

to the secondary substation. In fact, the secondary substation measurements are often taken at much lower granularity 

and hardly ever the submetered data of the entire area serviced by the MV/LV transformer are available.  

At this stage, two possible roads are identified to test some NILM techniques at the secondary substation level: 

1. Make a computer simulation of a secondary substation load curve and of the submetered flexible loads 

2. Work with the open source datasets of single house data to build secondary substation energy consumption 

The first option would generate a high volume of data at the desired granularity, but it is discarded because of time 

constraints and lack of skills to build a high-level simulation. On the other hand, the use of real-life open source data 

allows to shrink the time requirements and to benefit from the open source tools facilitating the analysis of data. The 

type of disaggregation technique and its accuracy will be constrained to the availability of data. In the next section, it 

will be explained how a test bed of NILM application at the secondary substation was assembled. 

4.1. Test bed assembling procedure 
 

The assembling of a test bed consists of the reproduction of the energy consumption measured at the secondary 

substation using single house data taken from the open source energy datasets that were shown in the relative chapter. 

As explained in the chapter on the Characterization of the LV grid, a 1000 kVA transformer, which is taken as a reference, 

has 6 to 8, 4-wires, 3-phase LV derivations, and the measurements are taken for each phase. Hence it is needed to 

reproduce the single-phase derivation and then the whole consumption of the transformer can be replicated with an 

additive process of all the 6-8 x 3 single phase derivations. 

To use this assembling method two major assumptions are made: 

- The secondary substation is supposed to serve only residential users 

- All the residential users are connected to a single-phase connection 

These two assumptions are made because of the lack of commercial activities and industry data in the employed 

datasets and for sake of simplicity. In fact, the simplest realistic case is intended to be analyzed at the beginning and 

then add some complication if this stage is giving satisfactory results.  

At this point, the replication of a single-phase of the LV feeder is composed by three steps: 

1. Choice of an energy dataset with enough data granularity and submetered measurement of the interesting 

flexible assets (EVs, heat pumps and PV) 

2. Decision-making process over how many houses the single phase is feeding 

3. Aggregation process of the chosen number of houses 
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4.1.1. Energy dataset 
 

The choice of the energy datasets is mainly driven by the availability of data. For Demand Response application of NILM 

techniques, only a few energy-intensive appliances are interesting to identify, hence their presence determined the 

choice of the dataset. Dataport is chosen as the best database to work with for two main reasons: 

- Submetered data of EVs, heat pumps and PV systems together are not available in any other energy database 

- The compatibility with NILMTK, an open source data analysis tool for disaggregation purposes that will be 

explained in a later stage. 

The Dataport database is the largest source of disaggregated customer energy data in the World with data collected 

from 722 houses in the US distributed between Texas, Colorado, and California. The monitored houses are 501 single-

family homes, 183 apartments, 35 town homes, and 3 mobile homes. The houses are equipped with at least one eGauge, 

EG3000, EG2010 or EG2011 meter that allows the monitoring of 12 circuits via current transformer clamps [57]. Both 

individual appliance and main circuits were monitored in most houses. Figure 21 shows the building construction, the 

house size and the electricity consumption characterization of the whole datasets. The average active power of each 

circuit measured at one-minute interval is the only electric data available and it will constrain the type of NILM technique 

employed as it will be discussed in the chapter relative to the NILM algorithms. 

 

Figure 21. Dataport data characterization clamps [57] 

The access to the portal containing the data is free for academic purposes while commercial access is limited to the 

members of Pecan Street’s Industry Council that sponsored its creation. 

Dataport portal also contains a subset of data in NILMTK format. The file is composed by one month of data from 669 

houses which were selected for having at least 8 submetered circuits. For each house, the data has been converted from 

the Dataport names to the NILM Metadata controlled vocabulary. This makes possible to easily analyze the dataset 

using the tools of NILMTK. The non-intrusive load monitoring toolkit (NILMTK) was first released as an open-source 

software in 2014. It was specifically created to facilitate the access to data and improve the comparative analysis of 

energy disaggregation algorithms with different datasets to lower the entry barriers for researchers and boost the 

progress of NILM techniques. The software includes dataset parsers, dataset analysis statistics, preprocessors for 

reformatting the data, benchmark algorithms and accuracy metrics.  

Figure 22 shows an example of data recorded for a single house both aggregated and disaggregated at appliance level 

over a period of 24 hours. 
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Figure 22. Disaggregated consumption of one house in Dataport clamps [57] 

4.1.2. Number of houses 
 

In the chapter relative to the low voltage grid characterization, it was highlighted how the lack of standardization in 

building the LV grid makes difficult to establish a priori the number of households connected to a single phase. The 

derivations of a MV/LV transformers are connected to a significantly different number of customers that goes from a 

few units in rural areas to a few hundreds in case of densely populated areas. The second condition was chosen for 

assembling the test bed because it represents the most common configuration and an independent analysis was 

performed to establish the number of houses fed by a single phase. 

The independent analysis was performed on measurement at the secondary substation in the area of Aberdeen as real 

data from the partner company were available. 140 Secondary substations are monitored in the area and they are all 

situated in a densely populated zone. The histogram of the mean daily power consumption was obtained for the month 

of January 2018 for one single phase of the distributors and it can be visualized in Figure 23. 
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Figure 23. Histogram of the mean daily power consumption of a single phase of the distributor 

The mean value of the distribution is 11,25 kW, which corresponds approximately to 9 houses from the Dataport dataset 

in the month of January that was used for the analysis. Hence, 9 was chosen as a credible number of electricity 

consumers connected to a single phase. 

4.1.3. Aggregation process 
 

Once the type of single house consumption and the number of electricity consumers are selected, the data need to be 

aggregated to reproduce the electricity consumption read at the single phase of the distributor.  

The electricity consumption profiles to be aggregated are taken from a pool of 51 households that present both a 

residential EV charger and a heat pump that was available in Dataport database. Figure 24 shows a typical daily power 

consumption of a single-family house equipped with an electric vehicle charger. 

 

Figure 24. Single-family house daily power consumption 

Then, 10 houses randomly chosen from the pool of 51 houses are aggregated with a simple addition of their respective 

active power consumption. The result is thought to approximate to a good extent the active power consumption 

measured at the single phase of the distributor. Figure 25 illustrates the aggregated power consumption of 10 houses 

with EV chargers and heat pumps. 
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Figure 25. The aggregated power consumption of 10 houses 

The power consumption profile shown in Figure 5 will be used to test the NILM algorithms when applied at the 

secondary substation level to disaggregate the single appliance consumption. 

4.2. NILM Algorithms 
 

The choice of Dataport database as a test bed for load disaggregation techniques introduces two main limitations in the 

choice of the algorithms: 

1. The steady-state analysis only can be performed on the data because of the low acquisition rate of the selected 

dataset 

2. Active power change is the only feature that can be extracted from the data because no other electrical 

parameters are available 

In fact, the chosen granularity does not allow to realize any harmonic or transient/noise analysis because with 1-minute 

data these effects are not visible as explained in the chapter relative to Energy Disaggregation approaches. In addition, 

the NILM techniques using reactive power, V-I trajectory and frequency domain characteristics cannot be used for lack 

of data despite being steady-state methods. 

Nonetheless, steady-state methods using active power resulted to be very effective in the identification of single state 

(on/off), energy-intensive appliances such as EVs and heat pumps and then considered acceptable for the purpose of 

this thesis [35]. On the other hand, if multiple state appliance, such as washing machines, were to identify the use of 

steady-state features would be ineffective. Moreover, these methods could lead to erroneous results in case of 

simultaneous state transition of several appliances, but this risk is accepted. 

Figure 26 and 27 shows the active power consumption profile of a heat pump and an electric vehicle. As it is possible to 

notice, they present a quite simple pattern characterized by relatively big step changes in power and only two 

operational states (on/off). 
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Figure 26. The daily power consumption of a residential heat pump 

 

Figure 27. The daily power consumption of a residential EV charger 

The detection of electric vehicles is identified as the simplest disaggregation problem as noticeable from Figure 7, hence 

the chosen load disaggregation techniques will be first tested for this case and, if delivering satisfactory results, then 

extended to heat pumps and PV systems. 

For the problem of energy disaggregation, no new algorithms are realized but the state of the art, best-performing ones 

are employed to test their validity in a different condition, where several aggregated houses are considered instead of 

a single one. The benchmark algorithms chosen for the analysis adopt completely different approaches to the energy 

disaggregation problem and they were chosen for being among the best performers in term of accuracy. The significant 

difference between the chosen algorithms is considered as a strength point offering a broader analysis of the problem. 

Two benchmark algorithms are taken from literature and they are respectively: 

1. Factorial Hidden Markov Model (FHMM), is a probabilistic tool using supervised learning to extrapolate the 

appliances signatures 

2. EV Code by Zhilin Zhang, an unsupervised method based on sound physical knowledge of EV charging power 

draw. 

In the next sections, the two algorithms will be shortly explained to better understand their working principle. 
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4.2.1. Factorial Hidden Markov Model (FHMM) 
 

FHMM is one of the most used algorithms by NILM researchers and it was found as a reference algorithm available in 

the NILM Toolkit documentation. FHMM is particularly interesting for its ability to incorporate in its learning both 

temporal and appliance state information. It is a Temporal Graphical Model that is a class of probabilistic models that 

discourse the problem of blind source separation approaches. This type of algorithms is already applied in a series of 

real-life problems such as speech recognition where different voices talking at the same time need be separated from 

an aggregated record. In a similar way, different appliances working at the same time can be extrapolated from an 

aggregate power reading. Sequential data can be easily represented through a Markov Chain which is a stochastic model 

describing a sequence of possible events which the probability of each event depends only on the state attained in the 

previous event [58]. Each event is characterized by its real power consumption together with other useful information 

that can be the duration of the on/off periods and the time of use along the analyzed period of time. Hence, at each 

instant t of a period T, with t ϵ T, the aggregate consumption is 𝑥̅(𝑡) and needs to be broken down to a series of 

appliances 𝑧𝑡
𝑛, where n ϵ N with N the number of appliances. The value of each appliance at a certain time corresponds 

to one of the K states of the trained model of the appliance.  

The working principle of an HMM can be described and inferred by three parameters: 

1. The probability of each state of the hidden variable at the moment t, which can be defined as a vector 

 𝜋𝑘 = 𝑝(𝑧𝑡 = 𝑘)                                                                      (10) 

2. The transition probabilities from state i at t to state j at t+1, which can be represented by the matrix 

𝐴𝑖𝑗 = 𝑝(𝑧𝑡+1 = 𝑗|𝑧𝑡 = 𝑖)                                                            (11) 

3. The emission probabilities for x, which are defined by a statistical function with parameter 𝛷 that is commonly 

assumed to be Gaussian distributed such that 

 

𝑥𝑡|𝑧𝑡, 𝛷~𝑁 ( µ𝑧𝑡
, τ𝑧𝑡

)                                                                 (12) 

Where 𝛷 = { µ , τ} , and µ𝑧𝑡
, τ𝑧𝑡

 are the mean and precision of a state’s Gaussian distribution. 

Eventually, the Equations 1, 2, 3 can be used to calculate the joint likelihood of the HMM: 

𝑝(𝑥, 𝑧|𝜃) = 𝑝(𝑧𝑡| 𝜋) ∏ 𝑝(𝑇
𝑡=2 𝑧𝑡+1|𝑧𝑡, 𝐴) ∏ 𝑝(𝑥𝑡|𝑧𝑡,𝑇

𝑡=1  𝛷)                          (13) 

 where the set of all the model parameters that must be found for each appliance during the training phase is 

represented by 𝜃 = 𝜋, 𝐴, 𝛷. Hence, when an HMM is used for energy disaggregation, 𝜃 parameters for each appliance 

must be tuned during the training phase and then, given a sequence of active power consumption signal 𝑥̅ it is possible 

to find the optimal sequence of discrete states z.  

A drawback of HMM when applied for energy disaggregation is that it is affected by local minima because of the 

interference of local minima. A variation of HMM is used to overcome this limitation, namely Factorial Hidden Markov 

Models (FHMM) where the output is an additive function of all the hidden states. 

Figure 28 shows an illustration of a FHMM. 
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Figure 28. Illustration of a FHMM 

Temporal Graphical Model and Machine Learning techniques for the energy disaggregation problem are generally 

computationally demanding in term of processing power and this means that they have to be run on cloud services 

instead that on locally installed microprocessors. 

4.2.2. EV Code 
 

EV Code is a training-free algorithm based on sound knowledge of the EV charging process. This represents an advantage 

over supervised learning methods for different reasons: 

- It does not require an extensive training set for fine-tuning its parameters, so it can be applied to data where 

the submetered appliances consumption is not available 

- It does not need to be retrained if new appliances are added to the system 

- It is computationally light because of its structural simplicity 

The code was publicly released in Matlab version in 2014 by Zhilin Zhang et Al. [42]. 

The algorithm can be described following a 4-step process: 

1. Thresholding the aggregated signal. It allows to define the segments that could represent an EV charging and 

eliminate the background noise of low energy. 

2. Filtering the spike train. After the thresholding process, the on/off heat pump cycles are all still in the signal 

and they need to be removed. The consumption pattern of residential heat pumps can have two different 

shapes, one resembles a spike train with very short duration, while the other shape resembles a rectangular 

waveform of high, slowly fluctuating amplitude and long duration. It is important to notice that the heat pump 

spikes gradually increase going towards the coldest/hottest hours of the day and gradually decrease later on 

depending on the season of the year. Therefore, it would not be possible to simply set a duration threshold to 

eliminate the heat pump spike train because of its changing duration. Then, the algorithm eliminates only the 

spikes that have a similar duration to the previous ones taking advantage of the gradual increase and decrease 
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of the spike train moving forward and back the signal. To avoid the algorithm to remove spikes of large duration 

an upper threshold is applied. If the spike train filter encounters a segment of significantly different duration 

from the previous and following segments does not mark it as a segment to remove even if lower than the 

upper threshold because it could potentially indicate a waveform of EV, oven or other resistive loads. 

3. Classification of the type of each segment. The remaining segments can be classified in three types: Type 0, a 

resistive waveform or an EV waveform fully overlapping with a resistive waveform of nearly the same duration. 

In the latter case, the segment should have high altitude (>5 kW) and then possible to distinguish from the 

former. Type 1, The segment is an EV waveform, or a heat pump lamp, or an EV waveform overlapping with 

waveforms of non-heat pump appliances with relatively shorter duration, or an AC lump overlapping with 

waveforms of other appliances. Type 2, the segment belongs to an EV waveform overlapping with both an AC 

lamp and with other appliances. 

 

To distinguish the different types a cumulative counting function is calculated for every given segment and 

based on the number of prominent peaks of its gradient it is possible to choose which type the segment belongs 

to. 

Figure 29 shows an example of every type of segment illustrating the cumulative function and its gradient. 

 

 

Figure 29. a) Type 0 (EV overlapped with a drier), b) Type 1 (EV with residual noise), Type 2 (EV overlapped with AC lamp and drier) 
[42] 

4. Energy disaggregation. At this stage, the concepts of effective width and effective height are defined. The 

effective width is the actual width of the bottom of the segment while the effective height is the height at 

which the width of the segment becomes 80% of the effective width. Then, based on geometric considerations 

different for every type of segment and extrapolated from experimental measurements it is possible to 

separate the EV consumption from the heat pumps lamps and from the resistive loads. 

Figure 30 shows the 4 steps of the algorithm as previously explained. 
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Figure 30. EV_code operational steps [42] 

It is important to emphasize that the algorithm is based on default values from general knowledge of EV charging load 

characteristics, despite that, it is not restricted to a low number of cases which the algorithm is built for, but it maintains 

a robust performance across a large number of houses and different seasons. 

4.3. Results 
 

Once the test bed is assembled and the reference algorithms are chosen, the testing phase can start. To briefly 

summarize what it was discussed in the previous paragraphs, the test bed is constituted by a 10 single family house 

profiles randomly selected from a pool of 51 houses from Dataport database and all equipped with a residential EV 

charger and a heat pump. The algorithms that will be used to try to separate the EV charging waveform from the rest 

are Factorial Hidden Markov Models with supervised learning and the training-free EV Code from Zhilin Zhang. In the 

next paragraph, a separate showcase of the obtained results will be shown. 

4.3.1. Factorial Hidden Markov Model (FHMM) with 10 houses 
 

Using supervised learning means that the parameters describing the Markov chain must be fined tuned before their 

application training them with historical data. Indeed, out of the pool of 51 houses, 10 were used for energy 

disaggregation and the rest for training the parameters on the whole month of January. 

Despite FHMM being one of the most promising tools for load disaggregation purposes, when it was applied to 10 

houses aggregated the given results were unsatisfactory and it was not able to disaggregate the EV waveform from the 

aggregated measurements. Figure 31 shows the obtained results compared with the ground truth for two different days 

of the month.  
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Figure 31. Two days EV energy disaggregation with FHMM 

As it is possible to notice from Figure 10, the FHMM is not able to estimate accurately neither the timing nor the energy 

consumption of the EV charging profile whose submetered consumption is shown in red. In addition, in many cases, the 

FHMM are identifying an EV charging waveform where there is not. At this early stage is inadequate to talk about a 

quantitative analysis with evaluation metrics such as the F1 score that was previously explained in the section relative 

to the evaluation metrics for energy disaggregation problems. A qualitative analysis is enough to state that this 

combination of data and algorithm is not appropriate for energy disaggregation. 

When dealing with probabilistic models such as FHMM is complicated to discover what went wrong in the 

disaggregation process and why this method was not adapt for energy disaggregation. Multiple reasons can be 

identified, and they can be related both to the algorithm, such as the inability to deal with a high number of appliances 

working at the same time and to the dataset whose granularity and amount of information about electrical parameters 

is not sufficient for the added complication of ten houses aggregated consumption. 

4.3.2. EV Code with 10 houses 
 

When dealing with unsupervised algorithms, the learning phase is not necessary, and the code was directly applied to 

the aggregated consumption profile of 10, randomly chosen, single-family house profiles. 

The EV Code, when applied to a single house profile, is delivering very satisfactory results with an averaged estimation 

error of the monthly energy consumption of the EV of 7,5% only outperforming any alternative in the literature [42]. 

However, moving the same algorithm without applying any modifications to ten aggregated houses the situation 

radically changes. Figure 32 illustrates the disaggregation process with the EV Code in two randomly chosen days in the 

month of January. 
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Figure 32. Two days EV disaggregation with EV_code 

Figure 4 shows the estimated EV charging load in violet and it significantly differs from the ground-truth in red. The 

spike train filter performed well eliminating the heat pump fast cycling and the same partially happened for the 

Classification Tool of each type of segment since almost all the identified segments are actually EV charging profiles. 

Nonetheless, the Energy disaggregation tool is often not able to assign the right amplitude to the EV charging load. In 

addition, some EV charging profiles are lost during the day probably either for being removed by the Spike Train Filter 

or by the Energy Disaggregation Tool. It must be noticed that the removed EV profiles are unusually short for being 

residential chargers, in fact, their duration is only around 15-30 minutes instead of being in the normal range between 

30 and 200 minutes and this could have confused the algorithm.  

Overall, the results were considered unsatisfactory in term of accuracy for developing a commercial service to identify 

the EVs charging load at the secondary substation. No quantitative analysis is performed to assess the accuracy of the 

algorithm and only qualitative considerations are done. 

The failure of the algorithm in the disaggregation purpose can be easily recalled to its design. In fact, it was specifically 

built to be applied at a single house level and its parameters were not suited for an aggregated consumption. 

Nonetheless, because its better performance compared to FHMM and its structure easier to understand, it was decided 

to continue its testing in a simpler scenario to improve its performance and see if it can be upgraded to a satisfactory 

level. 

In the next paragraph, the same algorithm (EV Code) is tested with 5 aggregated house profiles instead than from 10. 

The energy consumption profiles are always randomly chosen from the pool of 51 single family households equipped 

with a residential EV charger and a heat pump. 
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4.3.3. EV Code with 5 houses 
 

The aggregation of only 5 houses results in load profile much easier to understand and allows to see where and why the 

algorithm failed in its disaggregation purpose. In addition, 5 aggregated houses still represent a realistic scenario for 

real-world application. Therefore, the aggregation of 5 houses is considered an adapt playground for testing and 

improving the algorithm. 

Figure 33 and 34 illustrate two days randomly chosen in the month of January where the EV Code was having a 

satisfactory performance in estimating the EVs charging load. 

 

Figure 33. One day of  EV consumption disaggregation 

Figure 33 illustrates one day of total power consumption of 5 aggregated houses, the submetered consumption of the 

EV fleet of 5 vehicles and the estimated consumption by the EV Code. Along the day, a single electric vehicle is charged 

and the EV Code is able to identify it. On the second day in Figure 34, None of the 5 cars of the fleet is charged and the 

algorithm does not misguide any other appliance for an electric car. The EV Code demonstrates to have a quite good 

performance in days where there are any EV charging overlapping and the EV waveform presents the expected duration 

between 30 ans 200 minutes. 
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Figure 34. One day of EV consumption satisfactory disaggregation 

As it possible to notice from Figure 33 and 34, during the two days the EV Code performed almost perfectly in its purpose 

to disaggregate the EV charging load. Indeed, the Spike Train Filter was able to remove the short duration cycles of the 

heat pump and the Classification and Energy disaggregation Tools were able to correctly assign the EV charging 

waveforms to their relative segments. The amplitude of the segments still represents an issue and it is probably due to 

a need for improvement of the noise removal section. 

Unfortunately, despite the good performance registered in some days as the ones shown in Figure 33 and 34, the 

algorithm still has some issues in dealing with multiple aggregated houses consumption pattern as it can be visualized 

in Figure 35 where two underperforming days are shown. 
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Figure 35. Two days of underperforming EV disaggregation with EV Code 

Figure 35 shows that EV Code still underperforms in some cases and it is not ready for multiple houses application 

without any major modifications. In fact, it is affected by misidentification of EV waveforms where there are none and 

missed identification of others. The algorithm is still able to recognize the 3,5 kW charges correctly evaluating both the 

starting/ending points and the amplitude. However, when several appliances are overlapping or multiple EV are plugged 

in at the same time the algorithm misses the EV waveform or recognize other loads as EVs. These days make the monthly 

performance of the algorithm drop dramatically making inadequate any quantitative accuracy analysis. 

The reason of the underperformance is that the Classification and the Energy Disaggregation Tools are mainly based on 

geometrical considerations, the gradient of the cumulative function and the effective width and height, that significantly 

change when multiple houses are aggregated. The improvement of these tools requires some major modifications that 

are listed below: 

- The redefinition of the Classification Tool in order to include all the new combinations of overlapping appliances 

with the EV charging including the same type appliances overlapping in different houses. This is easy to notice 

in Figure 13 where during the second illustrated day there are two or more electric vehicles overlapping and 

the algorithm is not able to see them. 

- The Effective Width and Height of the Energy Disaggregation Tool must be fine-tuned to the multiple-house 

condition either through a manual or supervised learning process. 

- The Noise filter must be adjusted to get rid of the much higher background electricity consumption. 

- Higher granularity of data should be used to avoid the excessive overlapping of different appliances that for 5 

to 10 houses is consistent with 1-minute data.  

The upgrade of the code would require an elevated amount of time for its realization and it goes beyond the scope of 

this thesis for time constraints. Furthermore, the difficulties encountered for disaggregating the EVs waveforms, which 

are the simplest to identify among the considered appliances, clearly state the impossibility to estimate the heat pumps 

and PV systems load profiles at this stage of advancement. Therefore, these tasks will be left as future work. 
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Overall, despite the relatively unsatisfactory results obtained, the EV Code presents a potential to disaggregate the 

consumption of multiple aggregated houses and this can be noticed in the days with a good performance in the process. 

In fact, it is designed with a specific focus on energy-intensive, 2-state loads and this represents an advantage on 

general-purpose methods such as FHMM when dealing with the complicated load compositions at secondary substation 

level. Moreover, the algorithm is designed to separate heat pumps and resistive loads waveforms from the EVs ones, 

then with few modifications they could be disaggregated as well from the total consumption. This procedure would 

upgrade the EV Code increasing the variety of flexible loads it can deal with, hence its value.  For these reasons, the 

performed tests are considered a good starting point for a future work that could have important repercussions on the 

realization of a grid flexibility evaluation tool for the DSO.  

 

5. Conclusion 
 

The extensive work that has been carried out allows to have a broad view of what is the ideation, development, and 

verification of a commercial service for LV grid assessment and demand-side management. The literature review has 

shown the efforts done by the researchers in the energy disaggregation ecosystem and the creation of a big opensource 

movement that since 2011 released to the public several energy consumption datasets and analysis tools such as 

Dataport and NILMTK that are used for the purpose of this thesis. This phenomenon gave an incredible boost to the 

research in the field in the last years and allowed to use the state of the art of disaggregation algorithms for the technical 

verification of the DSM Evaluation Tool. In addition, the LV grid has been analyzed in an energy disaggregation 

perspective defining its challenges and highlighting the value of EVs and Heat Pumps as flexibility resources. 

The market feasibility study has identified the UK as a mature market and a favorable first application within UK Power 

Networks (UKPN) flexibility services framework. In the cost-benefit analysis, the costs related to the installation and 

operation of the DSM Evaluation Tool infrastructure have been listed and quantified. Moreover, a reference study from 

UKPN on the impact of electrification of heating and transports sectors has been used to calculate the benefits of the 

service that result to be significantly higher than the costs for Utility-scale deployment. The overview of the competition 

has also defined the innovative character of the service and has recognized the possible threats and opportunities for 

partnerships.  

Finally, the best performing benchmark algorithms for NILM have been tested. The secondary substation consumption 

has been recreated aggregating 5 and 10 single house data from Dataport dataset. Both FHMM and EV Code showed 

some limitations when trying to disaggregate the electric vehicle waveforms from the total consumption and they 

proved not to be ready for commercial deployment without major modifications. EV Code demonstrates to be able to 

correctly disaggregate the consumption of 5 houses for some of the trial days and it has the potential to radically 

improve its performance with some significant changes to the Classification and Energy Disaggregation Tools. The code 

also has the possibility to disaggregate heat pumps and resistive loads which are relevant for DR purposes with little 

additions. 
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The dissertation has shown the market feasibility and the highly beneficial impact of the DSM Evaluation Tool to 

decrease the costs of the LV grid upgrade and facilitate the transformation towards a cleaner and more decentralized 

energy system where the residential sector consumption is treated as a resource and not as an obstacle. Despite the 

unsatisfactory results of the tests, it is possible to see the light at the end of the tunnel and algorithms yielding 

satisfactory results will be seen in the near future. The wide scope of the thesis sometimes limited its accuracy of the 

single parts where deeper attention could be paid, and specific future studies are recommended. Even so, the selected 

approach is considered the best trade-off for the preliminary assessment phase where it is fundamental to understand 

if time and resources should be allocated for the development of a commercial product and the answer is yes.  
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